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Abstract
Robot learning from demonstration (RLfD) is a technique for robots to derive policies from instructors’ examples. Although
the reciprocal effects of student engagement on teacher behavior are widely recognized in the educational community, it is
unclearwhether the samephenomenonholds forRLfD.Tofill this gap,wefirst design three types of robot engagement behavior
(gaze, imitation, and a hybrid of the two) based on the learning literature. We then conduct, in a simulation environment, a
within-subject user study to investigate the impact of different robot engagement cues on humans compared to a “without-
engagement” condition. Results suggest that engagement communication has significantly negative influences on the human’s
estimation of the simulated robots’ capability and significantly raises their expectation towards the learning outcomes, even
though we do not run actual imitation learning algorithms in the experiments. Moreover, imitation behavior affects humans
more than gaze does in all metrics, while their combination has the most profound influences on humans. We also find that
communicating engagement via imitation or the combined behavior significantly improves humans’ perception towards the
quality of simulated demonstrations, even if all demonstrations are of the same quality.

Keywords Robot communicating engagement · Robot learning from demonstrations · Robot behavior in learning from
demonstration · Robot simulation

1 Introduction

Robot learning from demonstration (RLfD) is a technique
where a robot derives a mapping from states to actions,
a.k.a policy, from instructors’ demonstrations [7]. This tech-
nique is successful in teaching robots physical skills by
imitating instructors’ body movements e.g., pole balancing
[7], tennis swings [31], air hockey maneuvers [9], etc. A
standard RLfD process takes two steps: demonstration gath-
ering step, which collects demonstrations from the human
demonstrators, and policy deriving step, which reasons the
underlying state-action mappings [4]. Like a human learner,
a robot in RLfD could have different strategies of gathering
demonstrations according to its underlying policy derivation
algorithms. For example, robots with the DAgger algorithm
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[50] learn progressively by taking incremental demonstra-
tions from instructors, much like going through a scaffolding
process [32,51]. A robot can also learn more proactively.
For example, if equipped with Confidence-Based Autonomy
(CBA) [17], an interactive algorithm for RLfD, a robot can
request demonstrations at the states of which it has little or
no knowledge. These learning strategies have been proven to
be very effective and thus widely adopted in RLfD [40].

Unlike human learners, robots in previous RLfD pro-
cesses rarely show any engagement cues during the learning
process. They mostly remain stationary without giving any
feedback, especially when instructors are giving demonstra-
tions (i.e., in the demonstration gathering step). In human
tutelage, engagement cues play an important role in shaping
instructors’ mental model of the learners [58]. For example,
learners’ attentional engagement, e.g., gaze, indicates their
points of interest in the instructions.Attention direction is one
of the essential mechanisms that contributes to the learning
process. On the other hand, imitation, a gesture engagement
cue, shows learners’ motivation to perform like the instruc-
tors [16]. It is reported that learner engagement cues could
potentially affect instructor perceptions and behavior [25].
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For example, in educational research, instructors are found
to tend to provide more support to learners of high gesture
engagement [58]. The gaze and gesture engagement are also
reported to be specific to a learning process [16] while other
cues are common to any interactions.

These effects of showing these learning-specific engage-
ment cues, however, are less explored in the RLfD research,
partly because designing engagement cues for robots in the
context of RLfD is challenging. First, most of the existing
methods for generating engagement cues in human–robot
interaction (HRI) cannot be directly applied to RLfD. For
example, it is common practice in HRI to simulate robots’
attentional engagement by directing their gaze towards visu-
ally salient elements (e.g., color or lightness [45]), specific
objects (e.g., human faces [54]) or predefined events (e.g.,
pointing gestures [11]). This practice cannot be easily set up
in RLfD because the robot’s allocation of attention should
follow the development of instructors’ demonstrations. This
is especially true in skill-oriented RLfD, where the robot
needs to reproduce the body skills from the human demon-
strator. In this context, the attention should be subject to the
demonstrations, i.e., body movements, which are less con-
strained and highly dynamic compared to a standard HRI
process. Methods for generating other engagement cues,
e.g., imitation [8,41,49], also need further adaptation to
accommodate the dynamic nature of RLfD, especially when
the human body and the robot structures are not aligned
(a.k.a. the correspondence problem [4]). Second, even if an
engagement cue can be designed effectively, its deployment
in RLfD should be in real-time with a low computational
cost.

To adapt and improve existing attention and imitation
methods to be used in RLfD, we focus on skill-oriented
RLfD and propose two novel methods (Instant attention
and Approximate imitation) to enable robots to communi-
cate their learning engagement in an RLfD process. Note
that we consider the demonstration gathering step as the
interaction scenario since it determines the demonstration
quality, which is crucial for the policy optimality [4,61]. We
do not focus on designing effective learning algorithms for
demonstration learning. The learning engagement cues are
generated as follows: the Instant attention method gener-
ates robot gaze engagement by tracking instructors’ body
movements through particle filters; the Approximate imita-
tion method produces gesture engagement, i.e., imitation,
by partially mapping the instructor’s joint movements to
those of the robot with approximations. We then use the
proposed methods to generate three modes of engagement
communication (via attention, via imitation, and a hybrid
of the two) for robots in RLfD. To investigate the effects
of the three engagement modes on humans, we compare
them with another mode (“without-engagement” in which

the robot remains stationary1 as most robots do in exist-
ing RLfD studies [7,9,31]) by a within-subject user study
in a simulation environment. Results suggest that robots
with the proposed cues are perceived to be more engaged
in the learning process and their behaviors are more socially
acceptable in RLfD than the robots without. Also, having
engagement cues significantly affects human’s estimation
of the robots’ learning capabilities, making their estimation
over-optimistic. The robots which communicate engagement
in RLfD are perceived to be significantly more capable in
learning than the robots without, even though none of them
are equipped with imitation learning algorithms.2 Engage-
ment communication also affects the human’s expectation
towards the final learning outcomes. Furthermore, gesture
cues influence humans’ perceptions significantly more than
gaze engagement does, while the hybrid cues significantly
outperform the other two. We also find that showing gesture
or combined engagement significantly improves humans’
evaluation of demonstration quality. Specifically, the human
participants perceived the demonstrations to be significantly
more appropriate for the robot to learn when the robot
communicates its engagement via gesture or mixed engage-
ment, even though all demonstrations are of the same
quality.

The contributions of this paper are as follows. First, we
propose two novel algorithms which allow robots to gen-
erate attention and imitation behavior to communicate their
learning engagement with low computations in RLfD. Sec-

1 Note that in some types of RLfD the robot does not remain station-
ary, e.g., kinesthetic teaching, teleoperation and collaborative tasks. For
these tasks, the robot thus may need other types of engagement cues,
which is out of scope of this paper.
2 When referring to learning algorithms, we mean the classic and
state-of-the-art imitation learning methods, e.g., inverse reinforcement
learning [46], generative adversarial imitation learning [28,61]. Note
that the engagement generation process is fundamentally different
from a learning process in RLfD. Engagement generation relies on the
interaction process itself. Without the interaction, engagement means
nothing. We thus design the algorithms for robots to actively involve
themselves in the interaction process, paying attention to the demonstra-
tor’s joints and behaving approximately as the demonstrator’s moves.
The robot with these two algorithms needs the demonstrator’s full par-
ticipation, otherwise, no engagement communication could then be
triggered. Such engagement generation actively relies on the demon-
strator’s moves. However, the learning process in any learning from
demonstration aims to find an autonomous policy, with which the robot
could reproduce the demonstrated moves autonomously without any
demonstration being replayed. In other words, the goal of learning is
to remove such reliance on demonstrators. For example, in any modern
learning from demonstration algorithms, behavioral cloning, or inverse
reinforcement learning, the human demonstrations are often used as a
proxy to define the loss or the reward. In addition, though the training
is to derive a policy, a mapping from states to actions, the states and
actions are defined differently in RLfD. For example, the robot state in
RLfD is often defined as demonstration-agnostic or robot-centric so that
the learned policy could then be triggered without any demonstrators
being involved.
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ond, we developed a simulation platform to evaluate the
effect of engagement communication in RLfD. Third, we
take a first step towards evaluating the effects of three types
of engagement cues (attention, imitation, and hybrid) on
humans. Through evaluation in a simulation environment
with a humanoid robot learning the different skills from a
simulated demonstrator, we show interesting findings on the
design of robot engagement communication in RLfD. To the
best of our knowledge, this paper is the first to systematically
investigate how robot engagement communication affects the
humans’ perceptions and expectations of the robot in RLfD.

2 RelatedWork

2.1 Robot Learning fromDemonstration (RLfD)

Robot Learning from Demonstration (RLfD) is also known
as “Programming by Demonstration”, “imitation learning”,
or “teaching by showing” [52]. Rather than exhaustively
searching the entire policy space, RLfD enables robots to
derive an optimal policy from demonstrators’ (also called
instructors) demonstrations [7]. Usually, this technique does
not require additional knowledge about programming and
machine learning from human instructors, and thus opens
up new possibilities for common users to teach robots [18].
Existing studies on RLfD focus mainly on policy deriva-
tion algorithms, e.g., mapping states to actions by supervised
learning [17], updating the policy by value iteration in Rein-
forcement Learning [7], and recovering rewards to explain
demonstrations by Inverse Reinforcement Learning [1,61].
Some studies alsoworkondesigning robots’ reciprocal learn-
ing feedback to communicate what the robots have learned
to human teachers, e.g., demonstrating the robot’s current
learned policy [12], providing verbal and/or nonverbal cues
[2,11,13,36,48,63], or visualizing where they succeed and
fail [53]. These studies, however, largely overlook how the
robots’ engagement behavior would affect the instructors
and their demonstrations, especially during the demonstra-
tion gathering step. Hence, in this work, we consider how to
generate behavior that allows robots to communicate their
learning engagement to instructors, and investigate their
potential effects on RLfD.

2.2 Engagement and Learning Engagement Cues

Engagement is a broad concept in HRI with many different
definitions. Some studies focus on the whole spectrum of
interaction, and defines engagement as the process of initi-
ating, maintaining, and terminating the interaction between
humans and robots [55]. Others narrow the notion of engage-
ment down to the maintenance of interactions, interpreting

engagement as humans’ willingness to stay in the interaction
[65,69].

In the context of learning, engagementmainly refers to the
state of being connected in the learning interaction, which
can be measured from three aspects: cognition, behavior,
and emotion [56]. Cognitive engagement is closely related to
the allocation of attention as it is one of the most important
cognitive resources [47]. Failure to attend to another person
indicates a lack of interest [5]. Thus, we adopt attention as
a cue to communicate cognitive engagement in RLfD. Ges-
ture engagement is captured by task-related behavior, e.g.,
task attempts, efforts, active feedback, etc. Imitation, a com-
mon gesture engagement signal, refers to “non-conscious
mimicry of the postures, mannerisms, facial expressions,
(speech), and other behaviors of one’s interaction partners”
[14]. In interpersonal communications and HRI, the imi-
tation behavior increases the likelihood of understanding
[15], interpersonal coordination [10] and emotional conta-
gion [27]. In the context of learning, the imitation behavior
also indicates the robot’s internal status in learning, e.g., the
progress and motivation [16]. Thus, we use imitation as a
way to communicate the gesture engagement for robots in
RLfD. Emotional engagement is associated with the affec-
tive states evoked by the interaction, including valence and
arousal. Despite its importance, emotional engagement is
hard to apply in RLfD since most existing RLfD robot sys-
tems lack the full ability to express emotions. In the scope
of this paper, we define the robot learning engagement as the
involvement in the learning process,with a focus on its cogni-
tive engagement, i.e., attention, and gesture engagement, i.e.,
imitation.3The following subsection presents relatedwork on
generating attention and imitation behavior to communicate
engagement.

2.3 Robots’Communication of Engagement

In HRI, a robot can communicate its attention via different
physical channels, e.g., gaze [38,42–44], head orientation
[42,63], and body postures [66]. Regardless of which chan-
nel they use, robots are usually programmed to pay attention
to salient elements, including but not limited to colors [11],
objects with visual intensity [45], and movements [11,45].
For example, Nagai et al. regarded visually outstanding
points in the surroundings, in terms of their colors, inten-
sities, orientations, brightness, and movements, as points
of attention [45]. Other work directs robots’ attention to

3 Note that one survey on RLfD [4] describes many types of modeling
approaches and methods of acquiring demonstrations. This paper is
primarily concerned with getting demonstrations with visual input, and
for other ways like kinesthetic teaching or teleoperation, engagement
cues may need to be defined differently, if possible. In addition, other
types of tasks, such as collaborative ones between two robots or between
a robot and a human, may also require different engagement cues.
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specific objects, e.g., human faces [54] and colorful balls
[3] to name a few, or predefined events, e.g., pointing ges-
tures [42]. For example, Sidner et al. designed a robot that
pays attention to participants’ faces most of the time [54].
Lockerd et al. drove the robot attention mechanism with
interaction events, such as looking at an object when it is
pointed at or looking at a subject when the person takes a
conversational turn [42]. To accommodate multiple events,
a state transition diagram is usually adopted to control any
attention shifts [11,42]. Though these studies provide insight-
ful information about the design of robot attention, their
approaches may not easily apply to skill-oriented RLfD as
the point for attention in instructors’ body movements is
dynamically changing. In an RLfD process, the robot may
be required to learn how to manipulate a specific object
or to perform a specific action, e.g., walking like a human
being. It may be true in the first case that the engagement
could be communicated by paying attention to the object
when it is being manipulated. However, in the second case
of learning an action or a skill, it is hard to define the salient
elements as the whole demonstration motion would be of
interest.

Compared to attention, the imitation behavior has been
less widely adopted as a robot engagement cue. The robot
imitation of a human participant’s behavior in real-time is
inherently challenging due to the correspondence problems
[4] as well as the robot’s physical constraints [34,35,60].
Hence, instead of generating full-body imitation behavior,
some HRI researchers proposed to do partial imitations. For
example, Baileson and Yee built an immersive virtual agent
that subtly mimicked people’s head movements in real-time
[8]. A similar imitation strategy was applied by Riek et al. to
a chimpanzee robot [49]. In addition to head imitation, ges-
ture “mirroring” has also been implemented by Li et al. on a
robot confederate [41]. Although these studies showed that
partial imitation behavior improves participants’ perception
of robots’ capabilities [21,23], they mainly used ruled-based
methods [8] or predefined behavior [41], which may not be
transferable to RLfD scenarios. In this work, we employ
the same strategy and allow robot learners to make partial
imitations. Different from existing work, we take an algo-
rithmic approach to automatically generating approximate
imitations of instructors’ body movements for robots in real-
time.

3 Learning Engagement Modeling

This section presents two methods for generating engage-
ment cues. The first subsection briefly introduces human
body poses and forms the basis of the proposed methods.
The remaining subsections describe the methods in detail.

Fig. 1 a A body pose in the position form: all joints are described in
a single frame by their positions; b A body pose in the transformation
form: each joint has its frame and the skeleton defines parent–child
structures and translations between frames; the framewith x–y–z labels
is the root frame and is referred in the sensor frame

3.1 Representation of the Body Pose

In RLfD, instructors usually demonstrate a point via their
body movements. Our proposed methods thus use human
body poses to generate attention and imitation behavior. A
body pose is usually depicted by a tree-like skeleton, with
nodes as human joints and links as body bones (shown
in Fig. 1). Mathematically, this skeletal structure can be
represented in two forms4: the position form and the trans-
formation form.

Position form The position form describes the body pose
in a single frame of reference (usually the sensor frame), as
shown in Fig. 1a. In this form, the pose skeleton is denoted as
[J (1), J (2), . . . , J (n)], where J (i) ∈ R

3 is the position vector
of the i-th joint in the skeleton, and n is the number of joints.
This form gives each joint its global position, providing the
potential attention point for the robot. Hence it is used for the
Instant attention algorithm to generate robot attention points.

Transformation form The transformation form describes
the body pose in a series of frames of reference [62], as
shown in Fig. 1b. In particular, each joint has its frame (a
right-handed frame), and the links in the tree-like skeleton
define parent–child structures between frames. The pose of a
non-root joint is then described by a translation (i.e., the bone
length) and a rotation (i.e., joint movement) in its parental
frame, with the root joint (often the hip joint) described
in the sensor frame. This form decomposes a human body
movement into joint rotations (body-independent) and joint
translations (body-dependent) in a way that the movement
can be easily imitated by robots: just mapping the rotations
onto robot joints.Wedenote this formas [T1, T2, T3, . . . , Tn],
and use it for the Approximate imitation algorithm to obtain
approximate imitation behavior.

4 Usually, the two forms are readily available inmost body pose extract-
ing sensors, e.g., Kinect.
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3.2 Instant Attention

The gaze engagement for robots is generated based on the
cognitive theories on human attention. Generally speaking,
a generation process of human visual attention involves two
stages [33]: first, attention is distributed uniformly over the
visual scene of interest; then, it is concentrated to a spe-
cific area (i.e., it is focused) for gaining information [20].
In a skill-oriented RLfD process, the instructor demonstrates
skillsmainly through their body joint poses. The abovemech-
anism thus corresponds to that the human joints of interest
are tracked uniformly at the initial stage, and then one joint
providing the most information for learning is picked as
an attention point. As for demonstration learning, the more
predictable/track-able a body joint movement is, the less
information the robot could gain from that part, and con-
sequently, less attention the robot should pay to it. In other
words, if a body joint moves out of expectation the most
among all joints, it will be worth paying attention to.

To this end, we use the particle filter (PF) as it is robust and
effective in predictions [37] and tracking [6]. In short, PF is a
Bayesian filter which uses a group of samples to approximate
the true distributionof a state [68]. Particularly, given the state
observations, PF employs many samples (called particles) to
describe the possible distribution of that state. The particles
are denoted as

Xt := x [1]
t , x [2]

t , . . . , x [M]
t (1)

here M is the number of particles in the particle set Xt . Each
particle x [m]

t (with 1 ≤ m ≤ M) is a hypothesis as to what
the true state might be at time t , and is first produced by a
prediction model p(xt |z1:t−1) which is based on all history
observations z1:t−1, i.e., x

[m]
t ∼ p(xt |z1:t ). At each updat-

ing stage, particle x [m]
t is then re-sampled according to the

importance weight w[m]
t , i.e., the probability that the the par-

ticle x [m]
t is consistent with the current observation zt , i.e.,

w
[m]
t = p(zt |x [m]

t ). In other words, each x [m]
t survives into

the next stage with the probability w
[m]
t . For more details on

the particle filter, refer to [68].
We apply one PF to track each relevant joint during the

humandemonstration. Specifically, statex[m]
t ∈ R

3 describes
the joint position in the sensor frame. We assume the state
transits with additive Gaussian noise:

x[m]
t ∼ x[m]

t−1 + Δt−1 + N (
0, σt I

)
(2)

where x[m]
t denotes the predicted joint position vector, Δt−1

is the observed joint shift: Δt−1 = Jt−1 − Jt−2 (Jt refers to
the observed joint position at time t); and N (

0, σt I
)
is the

multivariate normal distribution with zero mean and diag-
onal covariance matrix σt I. The importance factor for each
particle is defined to be exponential to the Euclidean distance

Fig. 2 The particle clouds evolve: a all clouds are initialized at the same
size;b if the jointmovement is small, the cloud shrinks: the picked cloud
becomes smaller since the elbow did not move; c if the joint moves out
of its cloud region, the cloud grows to catch the movement: the picked
cloud becomes larger to adapt to the elbow’s movements

between the predicted and observed joint position:

w
[m]
t = ηe−2

(
x[m]
t −Jt

)T (
x[m]
t −Jt

)
(3)

where η is the normalizer. Each joint in the body pose is
tracked by a particle cloud, a group of particles Xt . In order
to dynamically adjust the cloud size in accordance with the
joint movement, the variance σt is set to be proportional to
the average Euclidean distance between the predicted and
observed joint position:

σt = α

M

∑

m

[(
x[m]
t − Jt

)T (
x[m]
t − Jt

)]
(4)

where α is a hyper-parameter and M is the number of parti-
cles. The σt indicates the cloud size: the greater the σt is, the
more attention the robot should pay to the associated joint.
Thus, the joint with maximum σt corresponds to the atten-
tion point. In the experiment, the α is set to 0.02 for the best
tracking of human joints.

Figure 2 illustrates how the PF works to generate atten-
tion. The particle cloud functions as the robot’s prediction
of the joint future movements and is subject to change based
on the current observations. Initially, the robot predicts the
movements of all body joints of interest to be the same,
i.e., all clouds are of the same sizes. During a demonstra-
tion, when a joint moves out of its cloud region, beyond the
robot’s prediction, the cloud grows to catch that movement
and the robot will thereafter be likely to pay attention to that
joint. Likewise, if the joint movement is small, within the
robot’s prediction, or no movement at all, the cloud shrinks,
and chances are small that the attention will be given to that
joint. Overall, the cloud size indicates the predictability of
the instructor’s body movements as well as the level of atten-
tion the robot needs to pay. At each time, the joint with the
biggest cloud is picked as the attention point. This process
loops with every new body pose as shown in Fig. 3.
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Fig. 3 The flow chart of the Instant attention

Fig. 4 The attention point PS
a is located in the sensor frame TS . We

need to do the transformation PR
a = TRS PS

a to get PR
a in the robot

head frame TR , where TRS is the transformation from TS to TR

We now present a practical algorithm for Instant attention
to generate gaze engagement instantly for robots (Algo-
rithm 1). The algorithm takes TrackedJoints J Settracked and
the BodyPose in the position form [J (1)

t , J (2)
t , . . . , J (n)

t ] as
input, and outputs one attention point at each time. Specif-
ically, the TrackedJoints contains the joints required to
be tracked. In practice, the joints to be tracked are task-
dependent, and should be defined according to the possible
attention points on the instructor’s body. For example, a cook-
ing robot may only need to track the instructor’s upper body
movements and the joint correspondence can be configured
by the developers based on the robot’s physical structures.
Another input BodyPose is the human body pose in the posi-
tion form. The algorithm runs as follows: first, it initializes
a particle filter with the same covariance for each tracked
joint (line 2–4). Then it estimates the distribution of the next
joint position (line 9–11), followed by the estimation cor-
rection given the current position observations (line 12–13).
Finally, the algorithm adjusts the covariance of the noise dis-
tribution to capture the joint movement (line 14), and the
attention point is found by selecting the joint with the maxi-
mum covariance value (line 15).

Once an attention point is generated, say Pa , it is worth
mentioning that Pa is located in the sensor frame. To obtain
the accurate attention point of the robot, a further transfor-
mation is required. Figure 4 illustrates how to transform Pa
in the sensor frame TS into the robot head frame TR given
the transformation TRS from TS to TR .

The Instant attentionmethodhas several advantages. First,
unlike other mechanisms (salience-based, object-based, or

Algorithm 1: Instant attention
Input: TrackedJointSet J Set tracked; BodyPose[

J (1)
t , J (2)

t , . . . , J (n)
t

]
, where J (i)

t is the 3D position of
i-th joint at time t

Output: AttentionPoint Pa ∈ R
3

[1] begin
[2] for each joint j in J Set tracked do
[3] initialize j-th particle filter for joint j ;

[4] initialize σ
( j)
t = 1 for joint j ;

[5] for each joint J (i)
t in

[
J (1)
t , J (2)

t , . . . , J (n)
t

]
do

[6] if J (i)
t is in J Set tracked then

[7] Δ
(i)
t−1 = J (i)

t−1 − J (i)
t−2;

[8] obtain particles xt−1 from i-th particle filter;
[9] for m = 1 to M do

[10] sample x[m]
t based on

x[m]
t = x[m]

t−1 + Δ
(i)
t−1 + N (

0, σt I
)
;

/* Equation2 */

[11] calculate w
[m]
t = ηe−2

(
x[m]
t −Jt

)T (
x[m]
t −Jt

)
;

/* Equation3 */

[12] for m = 1 to M do
[13] Select particles x[m]

t with probability ∝ w
[m]
t ;

[14] update

σ
(i)
t = α/M ∗ ∑

m

[(
x[m]
t − Jt

)T (
x[m]
t − Jt

)]
;

/* Equation4 */

[15] Pa = argmax
J (i)
t

σ
(i)
t ;

[16] return Pa ;

event-based), this method utilizes the particle cloud to track
the instructor’s joint movements, and automatically produces
attention points based on the information gained from the
movements. Second, the attention point is generated and
shifted with very little abruptness because the spatial size of
the cloud evolves smoothly. Specifically, the particle distri-
bution p(Xt ) is iteratively sampled based on their previous
distribution p(Xt−1) by the importance weight wt , i.e., a
p(x [m]

t−1) in Xt−1 survives into Xt with probabilityw
[m]
t , even

if the joint moves abruptly (i.e., x[i]
t − Jt is large).5 Second,

the joints to be tracked can be dynamically changed, offer-
ing a flexible and adjustable attention mechanism based on
the RLfD task. Furthermore, if an object is involved in the
demonstration and needs to be considered, we can simply
interpret the object as an additional “joint”, or point of interest
(POI) in a general term, for which a new set of cloud points is
used to track its movements. The particle-based engagement

5 In practical implementation, a particle set may collapse to a single
data point, which is called particle deprivation. Such problems only
tend to arise when the number of particles is small relative to the state
space. On the other hand, there are many ways to overcome this and
one popular solution is to add a small number of randomly generated
particles into the set after each resampling process, regardless of the
actual observations andweights. See [68] section 4.3.4 formore detailed
discussion.
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Fig. 5 The flow chart of the Approximate imitation

generationmechanismalso applies tomore general cases. For
example, the joints considered in the evaluation experiments
could potentially be generalized to a wide range of objects,
each of which could be a POI and thus need to tracked by a
set of particle points.6

3.3 Approximate Imitation

Behavior imitation in robotics is usually formulated as an
optimization problem, which needs to find the joint corre-
spondence first [4], and then solves the inverse kinematics
for the robot structure [24]. Both of the processes are
difficult, computationally intensive, and robot-configuration-
dependent, hence not applicable for generating imitation
behavior for robots with different configurations and hard-
ware. On the other hand, psychological results reported
that people mimic behavior to communicate engagement by
adopting similar postures or showing similar body configura-
tions according to the context [14].We thus relax the behavior
imitation in robotics as follows: First, the robot is not required
to search blindly for the best joint correspondence since the
joint correspondence is task-dependent. We allow the user to
explicitly specify the joint correspondence according to the
RLfD context. Second, for those robot joints whose Degree
of Freedom (DoF) do not match the human joint, we only set
the joint angles for the available robot joints to approximate
the human movements. Though this solution of approxima-
tion may not be optimal in the sense of behavior mimicry, it
runs very fast (in real-time) to generate gesture engagement,
achieving a balance between simplicity and optimality.

To achieve this, we propose the algorithm Approximate
imitation, which allows robots to generate similar motions
as the demonstrator for specified joints. Given the joint
correspondence, the algorithm runs with two steps: frame
transformation, and rotation approximation, as presented in
Fig. 5.

The frame transformation is to transform the instructor’s
body pose tomatch the robot frames. To be specific, we lever-
age the transformation form of body poses to decompose the
frame matching into two steps: first, rotation alignment and
then translation alignment. The rotation alignment is to rotate
the human joint frames so that their axes are aligned with the

6 Instant attention can be summarized as the robot should pay attention
to where it is uncertain, and uncertainty is measured using a particle
filter; similar ideas have been generally explored in active learning and
human studies [29,57].

Fig. 6 Frame transformation. a Rotation alignment: aligning the local
frame {H} of the human body pose with the corresponding robot joint
frame {R} by rotation matrix R. The aligned local frame is {H ′}. b
Translation alignment: translating {H ′} in its parent frame by Tp to
match the corresponding robot frame {R} so that the human pose link
pH is aligned with the robot link pR

robot joint frames, as shown in Fig. 6a; the translation align-
ment is to translate the human joint frames in their parent
frames so that the initial skeletal structure of the demonstra-
tor’s body matches the robot initial configurations, as shown
in Fig. 6b. To sum up, we represent the rotation alignment
as TR in the joint frame, {H}, and the translation alignment
as Tp in the parent frame of {H}, {Hp} (both represented
in Homogeneous transformation). Then for {H}, its frame

transformation is T
Hp
H Tp{H}TR , where T Hp

H is the transfor-
mation from {Hp} to {H}.

Since the DoF of the robot joint may not equal the
DoF of its corresponding human joint, we could not have
the exact movement mapping. Instead, we use the robot
joint to approximate the human joint rotations as follows.
First, a human joint rotation is converted into Euler forms,
(θroll, θpitch, θyaw). Second, if the DoF of a robot joint is 3
(roll, pitch and yaw) and exactly matches the human DoF,
then the conversion is straightforward: rotate for the robot
joint with roll first, then pitch, and finally yaw. If the DoF of
a robot joint is 2 (e.g., roll and pitch), then the conversion can
be approximated as rotating with roll first, and then pitch. If
the DoF of a robot joint is 1 (e.g., roll only), then rotate with
roll only. For example, in Fig. 7, the robot arm has the same
structure as the demonstrator’s but with different joint DoF,
as shown in Fig. 7a and b. It can approximate the instructor’s
left arm movement by first converting TS (the rotation) into
Euler angles (θroll , θpitch, θyaw), and then setting the joint
roll to θroll , and the joint pitch to θpitch for the shoulder,
ignoring the θyaw, as shown in Fig. 7c.

We now present the algorithm Approximate imitation in
Algorithm2. The algorithm takes joint correspondence Joint-
Correspondence, and instructor’s body pose JointMovement
in transformation form as input, and outputs the joint config-
urations, JointConfigs, for the robot. Specifically, JointCor-
respondence defines the joint mapping, {J H

i → J R
i }, from

human joint J H
i to robot joint J R

i for part joints. The Joint-
Movement is represented as a series of transformations along
the skeletal structure, [T1, T2, . . . , Tn] (see Sect. 3.1 for more
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Fig. 7 Rotation approximation: a the instructor’s left shoulder has a
DoF of 3 and its transformation is TS ; b the robot shoulder joint has
a DoF of 2: roll and pitch; c the robot rotates for its shoulder the roll
joint with θroll and then the pitch joint with θpitch , without considering
θyaw

Algorithm 2: Approximate imitation
Input: JointCorrespondence

{J H
1 → J R

1 , J H
2 → J R

2 , . . . , J H
n → J R

n },
JointMovement=[T1, T2, . . . , Tn]

Output: JointConfigs qR
[1] begin
[2] qR = []; Rotate_align = []; Translate_align = [] ;
[3] /* following alignment only runs once */ ;
[4] for (J H

i → J R
i ) in

{J H
1 → J R

1 , J H
2 → J R

2 , . . . , J H
n → J R

n } do
[5] Rotate_align.append(rotateAlign(J R

i , J H
i )) ;

[6] Translate_align.append(translateAlign(J R
i , J H

i )) ;

[7] for i in [1, 2, . . . , n] do
[8] T ′

i = Translate_align[i] ∗ Ti ∗ Rotate_align[i] ;
[9] (θroll , θpitch , θyaw) = convertToEuler(T ′

i ) ;
[10] if DoF(J R

i ) == 3 then
[11] append [θroll , θpitch , θyaw] to qR ;
[12] else
[13] if DoF(J R

i ) == 2 then
[14] append [θroll , θpitch ] to qR ;
[15] else
[16] if DoF(J R

i ) == 1 then
[17] append [θroll ] to qR ;

[18] return qR ;

details). The algorithm runs as follows: first, it calculates the
frame transformations from J H to J R , and saves the rotation
alignment and translation alignment in Rotation_align and
Translation_align (line 3–5). Then for each joint move-
ment Ti in [T1, T2, . . . , Tn], the algorithm transforms it into
the corresponding robot frame T ′

i by translation and rotation
alignment, followed by a conversion into the Euler form (line
7–8). The algorithm proceeds by selecting the right angles
from θroll , θpitch , and θyaw for the robot joint according to the
DoF of the robot joint (line 9–16). The joint configurations
are saved in qR , and returned as the final output.

TheApproximate imitationmethod has several advantages
for generating imitation behavior for robots in RLfD. First,
this algorithm runs in real-time as the imitation is only par-
tially taken place on the instructor’s body poses. In particular,

Fig. 8 RLfD simulation platform: a the simulated human instructor; b
the virtual Pepper robot; c the instructor and robot are facing towards
each other for teaching and learning; d platform composition

we take advantage of local transformations of body poses to
avoid solving inverse kinematics for the whole robot joints,
which is computationally intensive and may also not have
closed-form solutions.Also, instead of finding the exactmap-
ping for robot joint angles, we set configurations based on
the DoF of the robot joint to achieve a similar motion trend.
This conversionmay sometimes distortmovements, but, still,
the directions and trends are captured (as reflected in 4).
Second, this method is generic and applicable to standard
skill-oriented RLfD. Depending on the RLfD scenario, we
can also assign different joint correspondences to do a par-
tial imitation. For other types of RLfD, e.g., object-related
demonstrations or goal-oriented learning from demonstra-
tions, we can also apply the proposed method to generate the
approximate imitation based on the object or the goal. Specif-
ically, we can replace the joint transformationswith the poses
of the object or the goal, and generate the target θroll , θpitch ,
and θyaw. Then we can adopt the inverse kinematic solvers
to calculate a set of joint configurations to move the robot’s
end-site to the target pose (θroll , θpitch, θyaw). Based on the
DoF and the space constraints of the robot end-effectors, we
can make similar approximations to have the end-effector
only achieve the roll pose, the roll and pitch pose, or the
complete target pose.

4 Evaluation

This section first introduces our RLfD simulation platform,
then describes a preliminary study for determining the tim-
ing of imitating behavior, and finally presents the main user
study.

4.1 RLfD Simulation Platform

Our RLfD simulation platform is composed of a virtual
human instructor and a robot, as shown in Fig. 8a and b. The
virtual human instructor performs different yet controlled
types of movement skills, while the robot (a Pepper) needs
to capture motion and learn skills from the instructor. Both
parties stand facing each other in a simulated 3D space, as
shown in Fig. 8c.
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The simulation platform has three major components:
demonstration component, sensing component, and engage-
ment component, as shown in Fig. 8d.7 The demonstration
component determines what movements the instructor needs
to perform. We exploit motion capture (MoCap) data to sim-
ulate real movements. The MoCap data are recorded by 3D
motion capturing systems with high precision and are usu-
ally used for simulations and animations [22]. The sensing
component serves as a pose sensor, extracting body poses
from the virtual instructor. This component also converts
body poses between two representations (global positions
and local transformations). Finally, the engagement compo-
nent controls the robot’s engagement communication. Based
on the proposed algorithms, the robot could choose one of the
three ways to communicating engagement in RLfD: showing
attention (A-mode), showing imitation (I-mode), and show-
ing both (AI-mode). We further add one more mode, i.e., no
engagement (N-mode), to evaluate the effectiveness of these
threemodes. InN-mode, the robot just stands near the instruc-
tor and remains stationary without any body movements.
Compared with the A-mode, the robot’s gaze is fixed on the
demonstrator’s face and is not affected by the demonstra-
tor’s body movements. One might wonder why in N-mode
the robot is not focusing randomly on one of the partici-
pant’s joints. We argue that such setup is just a variant of
gaze engagement except that the robot acts much less intel-
ligently as it randomly moves its head, which could further
deteriorate the human perception per se. In a human learning
scenario, if a teacher sees students randomlymove their heads
and/or bodies, the teacher is likely to feel that the students
may be listening but are quite lost—not paying attention to
the right places—and thus gets quite confused about the stu-
dents’ actual learning status.

In this simulated RLfD, the tasks for robots to learn are
sports skills performed by a virtual instructor. We chose
sports skills for robots to learn as this type of movement
has often been adopted in RLfD [9,31]. Four types of sports
movements, i.e., boxing, rowing, swimming, and frisbee-
ing, are selected from CMU Graphics Lab Motion Capture
Database8 as these four sports involve movements of various
body parts. Regarding the policy deriving algorithms, even
the state-of-the-art method may fail to deliver good learning
outcomes, which may, in turn, change human participants’
perception towards the demonstration gathering. Thus, to
minimize any side-effects or biases introduced by the per-
formance of the learning algorithms, we do not utilize any
learning algorithms, and the robot has no actual learning abil-

7 We checked the video sources and confirmed that the motion capture
dataset can be copied, modified, or redistributed without permission.
We also sent an email to the dataset correspondence and received their
approval on using the original video in the paper.
8 http://mocap.cs.cmu.edu/.

Fig. 9 An example to show how the platform works: Row 1 shows
the human instructor’s real demonstration; Row 2 shows the re-targeted
demonstrations onto the virtual instructor; Row 3 and 4 present the
running of Instant attention and robot showing attention (A-mode); and
Row 5 presents the corresponding imitation engagement of the robot
(I-mode)

ity in the demonstration gathering process. In the otherwords,
the robot only communicates its engagement when observ-
ing the human demonstrations by showing different cues and
will not learn the sports skills in the following experiments
and studies.

Figure 9 presents an example of how the simulation plat-
form works. The first row shows the human instructor’s real
demonstration, which is then re-targeted onto the instructor,
as shown in the second row. The third and fourth rows present
the running of Instant attention and robot showing attention
(A-mode). The last row presents the approximate imitation
behavior of the robot (I-mode). We purposely rotate the 3D
scene in the last two rows to get a better view of the robot
communicating engagement.

Wechose an online simulation rather than afield test due to
the following constraints and concerns: First, due to the cur-
rent limitations of RLfD techniques, the demonstrators are
usually required to wear motion-capture devices, confined in
a designated space, and repeatedly showcase the targetmove-
ments. This could potentially impact on their interactionwith
robots and their perception of the robot’s behavior. Also, even
if the current state-of-the-art vision-based methods, obtain-
ing full-body motions with good precision (such that it could
be used for task learning) is still very challenging. First, one
camera Kinect is not enough to recover the body motion pre-
cisely. Second, multiple cameras also require cross-camera
calibration, which itself could be hard to set up on the fly in
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an open-world HRI. Furthermore, as an initial attempt, we
would like to study if humans could make sense of the learn-
ing engagement cues in a controlled environment without
distractions and complications introduced by noises, jerks,
etc. If we confirm the effectiveness of the proposed method
in a controlled setting, we could thenmove to a realistic envi-
ronment to test in the field.Also, it is very common these days
to first train the algorithm on a simulation platform to reduce
the costs. We thus use simulation in our experiment to avoid
all these side effects and unexpected outcomes. Furthermore,
we purposely select a viewpoint that allows the participants
to have a better view of both the robot’s and the instructor’s
behavior, i.e., the staging effect [67]. Second, the robot’s
engagement behavior could be evaluated in a more consis-
tent and repeatable manner in a simulation. In a field test, the
instructor’s demonstrations are usually non-repeatable and
could be easily influenced by robots’ reactions. The sim-
ulation allows different engagement cues to be compared
without bias. Second, the simulation provides a controllable
and measurable environment to monitor and evaluate a sys-
tem’s performance from various metrics, which is often a
necessity before algorithms are deployed in RLfD.

This simulation platform was built upon the Gazebo sim-
ulator9 and the Robot Operating System (ROS). We use the
MatlabRobotics SystemToolbox10 to facilitate the algorithm
implementation.

4.2 Preliminary Study

In interpersonal communication, a person’s imitation behav-
ior, also called mirroring behavior, often happens after the
partner’s target behavior with a certain time delay [14,30].
In this paper, we generate such mirroring behavior via the
approximation mechanism. We need to determine the exact
time delay so that users can correctly recognize imitation
as a learning engagement cue. We run a within-subject pilot
experiment to check the appropriate timing of robot imitation
relative to the target action.

Manipulated variable We set time delay as the inde-
pendent variable in this study and experiment with three
intervals: 0.5s, 1.0s, and 2.0s. Technically, we used a buffer
to store instructors’ body poses to postpone any imitation
behavior. After proper setup, the buffer size was set to 15,
30, and 60 to achieve an appropriate time delay of about 0.5s,
1.0s, and 2.0s, respectively.

Subject allocation We recruited 30 participants (mean
age: 35.5, female: 12) via Amazon Mechanical Turk (AMT)
who had no prior experience with physical or virtual robots.
Each participant watched three simulated RLfD videos cor-

9 http://gazebosim.org/.
10 https://www.mathworks.com/hardware-support/robot-operating-
system.html.

Fig. 10 Results for the right timing of behavioural engagement: a par-
ticipants’ ratings on robot learning behaviour, and b distribution of
participants’ feedback

responding to the three delay intervals. In the videos, the
instructor was teaching the robot some type of sports skill,
and we staged the 3D scene at a fixed angle for a better view
of the robot imitations. We counterbalanced the presentation
order of the different time delays. In otherwords, each subject
tested only four out of the 16 possible combinations.

Dependent variables Participants watched videos show-
ing the robot imitating the instructor with three different time
delays. Theywere informed that the robot is supposed to learn
sports skills from the demonstrator. After each video, they
were asked to rate their agreement on a 7-point Likert scale
as to whether the robot in the video is learning.

Figure 10 presents the average and overall rating distri-
bution on different time delays. We run a repeated measures
ANOVA with time delay as the factor, and find that there
is a significant difference in delay-induced perception of
robot learning engagement (F(2, 58) = 88.37, p < 0.01,
η2 = .76). Results of the Bonferroni posthoc test suggest that
the engagement rating of delaying for 1.0s is significantly
higher than that of delaying for 0.5s (p < 0.01) and 2.0s
(p < 0.01). Overall, setting the imitation time delay to 1.0s
can effectively communicate robots’ learning engagement (
70%agree and strongly agree).We apply this configuration to
the Approximate imitation algorithm in the main user study.

One might be wondering that why the rating difference
between 0.5s and 1s delay is noticeably dramatic, even larger
than the difference between 1s and 2s delay. The cause
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may be the approximation mechanism adopted for gener-
ating the mirroring behavior. When the delay time is small
(e.g., 0.5s), the approximate imitation algorithm generates
the movement in a very responsive manner, almost at the
same pace as the demonstrator’s movement. The subjects are
likely to feel that the robot is showing, rather than following,
the demonstrator’s movement. As the delay time becomes
longer (e.g., 1s), the movement following effects becomes
more obvious, and the robot appears to be learning from the
demonstrator by mimicking his/her behavior. Consequently,
the ratings between the 0.5s and 1s in terms of robot commu-
nicating learning engagement become higher. Such dramatic
rating difference also confirms the necessity and importance
of using the preliminary study to determine the appropriate
delay time for the followed studies. Furthermore, different
ratings of timing for robots to conduct mirroring behavior
confirms that it is not the complexity of behavior that leads
to different perceptions of robots’ learning ability. Rather, it
is when the behavior should be performed (i.e., engagement)
that matters.

4.3 Main Study

To evaluate the effectiveness of engagement communication
andour proposed cues onparticipants’ perceptionof the robot
and the demonstration, we conducted a within-subject exper-
iment on an RLfD simulation platform, with an additional
“without engagement” condition (N-Mode) as the baseline.

4.3.1 Hypothesis

Our proposed methods generate different types of engage-
ment cues for robots to express their engagement. Accord-
ingly, we first hypothesize that:

H1 (1) Regardless of actual cues taken, robots that com-
municate engagement are perceived to be significantly more
engaged (H1a) in learning, and their learning behavior is sig-
nificantly more socially acceptable (H1b) than those in the
N-mode. Further, (2) imitation cuewill receive a significantly
higher engagement rating than attention cue (H1c), while
combined cues will be rated significantly the most (H1d).
Similarly, (3) imitation cue will be rated significantly more
acceptable than attention cue (H1e)while combined cueswill
be rated significantly the most (H1f ).

According to educational theory postulating that learners’
engagement cues, especially gesture engagement, could have
reciprocal effects on instructors [58], we hypothesize that:

H2Robots communicating engagement via different cues
will have significantly different influences on human partici-
pants. Specifically, (1) regardless of the cues, communicating
engagement will significantly influence humans’ estimation
of the robot learning capability (H2a), and significantly raise
the humans’ expectations towards the learning outcomes

(H2b) than no communication. Further, (2) imitation cues
will lead to a significantly higher estimation of the robot’s
capabilities than attention cues (H2c) while combined cues
have the most significant influence than others. (H2d). Sim-
ilarly, (3) imitation cues will result in a significantly higher
expectation towards the learning outcome than attention cues
(H2e) while combined cues have significantly the highest
expectation than others (H2f ).

We further hypothesize that the robot showing differ-
ent engagement behavior can affect humans’ assessment of
demonstration quality. More specifically:

H3 (1) Regardless of the exact demonstrations shown
to robots, different engagement cues will influence the
human participants’ assessment of the demonstration quality.
Specifically, demonstrations for robots with attention cues,
imitation cues, and hybrid cues will be rated as significantly
more appropriate (in terms of the expected robot capabilities)
than that without engagement cues even if they are the same
(H3a). Further, (2) demonstrations for robots with imitation
cues and the hybrid cues will have a significantly higher rat-
ing on appropriateness than that with attention cues (H3b).

In the study, these different aspects were measured via
post-study questions with 7-point Likert scale answers, as
shown in Figs. 11 and 12. We derived these questions in the
user study based on the previous research on human–robot
interactions and robot learning. Specifically, the questions
to measure robot communicating engagement are adapted
from the engagement studies [59,64]; the questions to mea-
sure participants’ expectations towards the robot learning
capability are derived based on the studies on human expec-
tations and assessment of human–robot collaborations [39].
In addition to those engagement-related questions, we asked
several factual questions, including “what sports skill is the
virtual human demonstrating?” and “what skill is the robot
learning?”, and open questions, including “why do you have
such estimate of the likelihood about the robot mastering the
sports skill?” and “any comments on the robot’s behavior”.
These factual and open questions were asked in each round
to collect participants’ understanding of the study materials
and opinions on the robot learning. We also took two steps
to ensure the effectiveness of the answers to all the questions.
First, the questions could only be answered after participants
took the necessary actions to understand the experiment.
For example, the questions to measure engagement were
only visible when the participants finished watching the full
learning videos; and the questions to measure the partici-
pants’ expectations also require the participants to provide
the answers and their reasons (those without giving reasons
could not proceed to the next questions). Second, all answers
were manually checked to reject any invalid responses, e.g.,
a response with the same answers to all questions, and a
response with vague and inconsistent comments. In total,
we only removed 4 responses and the comments in those
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responses: OK (subject#12), I do not care (subject#5), none
of my business (subject#2) and I do not like robots (sub-
ject#23).

4.3.2 User Study Design

The study consisted of five sessions: one introductory ses-
sion and four experimental sessions. The introductory session
requested demographic information and presented a back-
ground story to engage users: the participant has a robot
team of four for an Olympic game. They needed to assess
the robots’ performancewhen theywere under a professional
coach’s tutelage. This session also presents all robots at the
same time and showcase their learning capability by showing
two video footages: one shows a different set of demonstra-
tions given by a human demonstrator (dribbling a basketball)
and another shows how the robot could learn such dribbling
motion (learned by the behavioral cloning method). The par-
ticipant can only proceed to the next sessions after finishing
watching these two videos. This introductory session ensures
that participants have been fully aware of the robot’s learn-
ing capabilities. In experiment sessions, participantswatched
the human instructor’s movements first and then monitored
the robot learning process in the RLfD simulation platform.
After each session, participants were required to fill post-
study questionnaires. Each session checked one mode, and
modes were counter-balanced with learning tasks. Specifi-
cally, we randomized the order of engagement modes and
the four physical skills to ensure the mode applies evenly
across different skills and the skill also occurs evenly across
different modes. We recruited 48 participants from Amazon
Mechanical Turk (AMT) (mean age: 30.9, female: 6, no prior
experience with teaching robots, and no participation in the
preliminary study. (Note that some participants reported that
they had prior experience interacting with physical/virtual
robots as they mentioned in answers to the open-ended ques-
tions. Our participants are representative in terms of their
exposure toHRI andRLfD, andourfindings could potentially
be generalized to young adults with good digital literacy. We
acknowledge that our participants lack diversity in age and
education level. We are interested in exploring how differ-
ent user populations may perceive and react to RLfD in the
future.) Each subject receives two dollars as compensation
for his/her contribution.

During the experiment, we asked the participants to rate
if they perceived the robot was paying attention or imitat-
ing based on its behavior. This served as the manipulation
check for validity, ensuring that our designs indeed convey
the intended type of engagement. Note that what we want
to assess is that, knowing that the robot can learn the target
skill if taught right, do participants think that the demon-
strations given are good enough for the purpose based on
their observationof the robot’s learning engagement.Without

Fig. 11 Participants’ ratings on robot engagement communications and
their behavior in RLfD

emphasizing the robot behavior in the pilot study, participants
rate the quality of demonstration based on their prior belief of
whether or not they think the robot could acquire the demon-
strated skill in an ideal situation. Sowe improved the question
to specify the requirement that the quality of demonstrations
should be assessed based on the robot’s reactions (which is
also highlighted in the experiments).

4.3.3 Analysis and Results

Manipulation check. The manipulation check for differ-
ent engagement communications shows, in Fig. 11, that the
manipulation is effective (for attention cue: repeated mea-
sures ANOVA, F(3, 141) = 153.79, p < 0.01, η2 = .80;
for imitation cue: repeated measures ANOVA, F(3, 141) =
197.45, p < 0.01, η2 = .84). Robots in A-mode (M =
5.53, SD = 1.85) and AI-mode (M = 6.17, SD = 1.11)
are indeed perceived to show more attention than robots in
N-mode (M = 2.53, SD = 1.83); Bonferroni posthoc test
p < 0.05. Also, more imitation behavior is reported by sub-
jects with robots in I-mode (M = 4.98, SD = 1.33) and
AI-mode (M = 6.05, SD = 1.22) than robots in N-mode
(M = 1.88, SD = 1.57); Bonferroni posthoc test p < 0.05.

Efficacy of proposed engagement cuesWe analyze partic-
ipants’ ratings via a one-way repeated measures ANOVA
with the mode as the independent variable. We find that
both attention and imitation cues significantly improve the
ratings of robots’ engagement levels and their behavior,
as shown in Fig. 11. Specifically, the robots with A-mode
(M = 5.53, SD = 1.85), I-mode (M = 5.78, SD = 1.03)
and AI-mode (M = 6.17, SD = 1.11) are perceived to
be significantly more engaged in the learning process than
the robot in N-mode (M = 2.53, SD = 1.83); repeated
measures ANOVA, F(3, 141) = 153.79, p < 0.01, η2 =
.80. Thus, H1a accepted. Consequently, subjects accept the
robots’ behavior in RLfD (A-mode: M = 4.02, SD = 1.78,
I-mode: M = 4.62, SD = 1.44, and AI-mode: M =
5.58, SD = 1.39) significantly more than the robot in N-
mode (M = 2.20, SD = 1.60); repeated measures ANOVA,
F(3, 141) = 102.89, p < 0.01, η2 = .73. Thus, H1b
accepted. Further, in termsof engagement, combined cues are
reported to be significantly better than single cues; Bonfer-
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Fig. 12 Participants ratings on the effects of engagement communica-
tion on the participants’ perception and their assessment of demonstra-
tion qualities

roni posthoc test p < 0.01. Thus, H1d accepted. in terms of
acceptability, combined cues are reported to be significantly
better than single cues; Bonferroni posthoc test p < 0.01.
Thus, H1f accepted. However, we do not notice a signifi-
cant difference between imitation cue and attention cue, thus
H1c and H1e are both rejected. Therefore, H1 is partially
accepted.

Based on these analyses, we, therefore, conclude that:

Overall, our results partially support H1:showing
attention, imitation, or both are perceived to be signif-
icantly more engaged in learning and is significantly
more acceptable. Also, showing both behaviors is per-
ceived to be significantly better than showing only one
behavior. However, no significant difference can be
found between showing attention and showing imita-
tion.

Effects of engagement cues on participants’ percep-
tion We then compare the effects of different engagement
cues on subjects’ perception via a one-way repeated mea-
sures ANOVA with the mode as the independent variable.
In general, robot engagement communication significantly
enhances the participants’ estimation of robots’ learning
capabilities and the participants’ expectation of the learn-
ing outcomes, even if none of the robots in the experiment
have the learning ability (no learning algorithms are adopted
in the user study). Specifically, in terms of estimating the
robots learning capability, participants rated the robots, in
Fig. 12, with respect to A-mode (M = 4.13, SD = 1.70),
I-mode (M = 4.88, SD = 1.49) and AI-mode (M =
5.63, SD = 1.21) to be significantly more intelligent than
the robots in N-mode (M = 2.10, SD = 1.45); repeated
measures ANOVA, F(3, 141) = 155.25, p < 0.01, η2 =
.80. Thus, H2a accepted. Similarly, participants rated the
robots with engagement behavior (A-mode: M = 3.70,
SD = 1.94, I-mode: M = 4.40, SD = 1.63, and AI-mode:
M = 5.73, SD = 1.47) to be more likely to master the
skills than the robots without (N-mode: M = 2.02, SD =

1.59); repeated measures ANOVA, F(3, 141) = 125.38,
p < 0.01, η2 = .76. Thus, H2b accepted.

In addition, showing gesture engagement, i.e., I-mode,
have significantly more influences on the participants than
showing gaze engagement, i.e., A-mode. In particular, the
robots in I-mode (M = 4.88, SD = 1.49) are perceived to be
significantlymore capable of learning the demonstrated skills
than the robots inA-mode (M = 4.13, SD = 1.70); repeated
measures ANOVA, F(3, 141) = 155.25, p < 0.01, η2 =
.80. Thus, H2c accepted. Similarly, the robots in I-mode
(M = 4.40, SD = 1.63) receive significantly higher ratings
than the robots in A-mode (M = 3.70, SD = 1.94) in terms
of participants’ expectation towards the learning outcomes;
repeated measures ANOVA, F(3, 141) = 125.38, p <

0.01, η2 = .76. Thus, H2e accepted.
Further, we also notice significant differences between

robots in AI-mode and robots in other modes. Specifically,
robots in AI-mode show significantly more intelligence in
learning (M = 5.63, SD = 1.21) than robots in N-mode
(M = 2.10, SD = 1.45), A-mode (M = 4.13, SD =
1.70), and I-mode (M = 4.88, SD = 1.49); repeated mea-
sures ANOVA, F(3, 141) = 155.25, p < 0.01, η2 = .80.
Thus, H2d accepted. Also, the robots in AI-mode (M =
5.73, SD = 1.47) are estimated by the participants to be
significantly more likely to master the skill than the robots
in modes (N-mode: M = 2.02, SD = 1.59, A-mode: M =
3.70, SD = 1.94 and I-mode: M = 4.40, SD = 1.63).
Thus, H2f accepted. Note that in all different engagement
modes and different skill settings, the robots are equipped
with no learning algorithms and thus have no actual learning
abilities.

In general, participants perceived the robot showing gaze
engagement to be quite different from the one showing ges-
ture engagement. Specifically, for the open-ended question
“why do you have such estimate of the likelihood about
the robot mastering the sports skill?”, participants stated
that, when showing gaze only, the robot seems to be “atten-
tive throughout the demonstration so it knows what to do”
(P16), “listening so there is a possibility of mastering this
sport skill” (P18), and “learning by watching” (P13). These
comments suggest that the participants perceive the robot
exhibiting gaze engagement as an attentive listener in a men-
tal state of learning. For the same question, when showing
gesture engagement, the robot appears to our participants as
“doing so well at following the instructor” (P4), and “mak-
ing attempts and ideally would get better over time” (P18).
These comments imply that the participants are judging the
robots learning capability based on the robot’s motivation to
perform like the instructors. These differences between two
types of perceptions also justify our motivation to separate
gaze engagement and gesture engagement in this study.
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Overall, our results supportH2: communicating engage-
ment significantly influence the humans’ estimation
of the robots’ learning capabilities, and significantly
changes their expectation towards the final learning
outcomes, even though none of the robots have the
learning abilities.Moreover, the gesture engagement in
RLfD, i.e., imitation, presents significantly more influ-
ence on the participants than the gaze engagement.
Furthermore, communicating engagement via two cues
at the same time have significantly more effects on par-
ticipants than communicating engagement via a single
cue.

Effects on participants’ assessment of demonstration
qualities Finally, we analyze the participants’ ratings on the
appropriateness of instructors’ demonstrations. As shown
in Fig. 12, no significant difference can be found between
A-mode (M = 4.48, SD = 2.10) and N-mode (M =
3.35, SD = 2.08); H3a rejected. However, compared with
A-mode, onlyAI-mode (M = 5.93, SD = 1.00) significantly
improves the participants’ assessment of demonstration qual-
ity in RLfD, Bonferroni posthoc test p < 0.01. Thus, H3b
partially accepted. Note that in different engagement modes,
the skills to be learned are all generated by the same set of
MoCap data. Thus all demonstrations are of the same quality.

Overall, our results partially support H3: communi-
cating gesture engagement or combined engagement
will significantly improve participants’ assessment of
demonstration qualities, while showing attention can-
not, even though all the demonstrations are of the same
quality.

Further, in the comments collected from the user study, we
found that most participants explicitly stated that the robots
without gesture engagementmay fail in learning, and accord-
ingly, they were more likely to adjust future demonstrations
when the robots communicated no engagement or only gaze
engagement.

5 Discussion

5.1 Engagement Communication for Robots in RLfD

The Choice of Engagement Cue Should Consider the Nature
of the Learning Task

Our results show that robots’ gesture engagement is
preferable to gaze engagement in a physical skill-oriented
RLfD, which can probably be explained by the correspon-
dence between the practice of RLfD and the cone of learning
[19]. Cone of learning, a.k.a. pyramid of learning or cone
of experience, depicts the hierarchy of learning through
involvement in real experiences [19]. It proposes that visual

receiving (just watching the demonstration) is a passive form
of learning, and learners can only remember half of the
knowledge passing through this channel two weeks later. In
contrast, “doing the real thing” is a type of active learning
that leads to deeper involvement andbetter learningoutcomes
[19].

In RLfD, the basic task for robots is to derive a policy from
demonstrations and then reproduce the instructors’ behavior
[4]. On the one hand, a robot’s imitation behavior resem-
bles this “behavior reproducing” process; it is thus deemed
actively engaged in the learning process. On the other hand,
although showing gaze engagement implies that the robot is
involved in the visual receiving of instruction, it is still con-
sidered as a passive way to learn. Consequently, instructors
may conclude that a robot showing gesture engagement will
have a deeper understanding and better mastery of the skill
than that showing gaze engagement. Moreover, by analyz-
ing the quality gap between a robot’s imitation behavior and
the demonstration (behavior to be reproduced), instructors
may have a more accurate assessment of the robot’s learning
progress. In a word, to design effective engagement cues for
robots inRLfD,we need to consider the nature of the learning
task.
Engagement communication should reflect robot’s actual
capabilities

In our study, we do not equip the robot with any actual
policy derivation algorithm since we want to avoid the per-
ception bias caused by the algorithm selection. In other
words, the robot has no learning ability. Still, many subjects
are convinced that robots with engagement communication
(attention, imitation, or both) would finally master the skill.
They hold such a belief even if some tasks are technically
very challenging for robots to learn because of the corre-
spondence problem, e.g., swimming. These findings suggest
that engagement communication can affect instructors’ men-
tal model of the robot’s capability and progress. There can
be a misalignment between instructors’ expectations and the
actual development as shown in our study. If instructors shape
their teaching according to an inaccurate mental model, frus-
tration may occur later in the RLfD process. Hence, it is
critical to ensure that a robot’s communication of engage-
ment reflects its actual capabilities (policy development in
the case of RLfD). One possible direction is that the robot
engagement communication should be driven by the learn-
ing progress. For example, we can define the robot’s actual
capability as what it has learned. In this sense, the robot
could gradually show its engagement, e.g., showmoremimic
behaviors, during the learning process.

5.2 Limitations

We are motivated by the phenomenon of human tutelage,
in which the teachers build their mental model of students
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by observing learning behavior, especially their engagement
cues. The teachers, in this process, have different roles:
observer (to monitor how students do) and demonstrator (to
intervene in the learning process by providing demos). Sim-
ilarly, a teacher in an RLfD process is also assigned these
roles. They could observe the learning process and intervene
at the point when they thought the demonstrations need to be
changed, which is directly validated through their answers to
questionnaires after each session. We would like to answer:
(1) whether human instructors can understand the learning
engagement cues simulated on robots, (2) how they make
sense of these cues, and (3) how the instructors’ interpreta-
tion of these cues may affect their perception and teaching.
Whether and to what extend instructors’ consequent change
of teaching could improve robots’ learning algorithm is to
be investigated in future work. In our current evaluation, we
cannot evaluate whether and how the robot behavior leads to
improved demonstrations that in turn result in better learning.
How the demonstrations in turn affect the learning process
could be a promising future study.

In addition, this work has several limitations. First, in our
study, engagement communication is decoupled from the
robot’s actual learning process. However, in the human or
animal learning, such communication is usually associated
with the learning process. For example, a student making
good progress tends to show more gesture engagement [58].
We will investigate how to couple the learning process with
engagement communication in the future. Second, in this
paper, we only consider two types of learning engagement
cues, i.e., attention and imitation. In practice, human learners
may employ more diverse cues, e.g., spatially approach-
ing, etc. Third, the proposed methods, Instant attention and
Approximate imitation are both based on the human body
poses. They may not apply to the learning tasks which do
not necessarily involve the demonstrator’s body movements,
e.g., object manipulations. For those tasks, designing a good
mechanism to communicate the robot engagement is still an
open question. Fourth, in this work, we only consider skill-
oriented RLfD in which the robot has to master a skill taught
by instructors. Other types ofRLfD, e.g., goal-orientedRLfD
in which the robot learns how to achieve a goal from human
examples, are inherently different in task settings. Though
the proposed method may work, we still need to evaluate
their effects in future work. Fifth, several studies show that
there are gender effects on non-verbal communication [26].
Therefore, people in different genders may have different
understandings of the robot engagement communication in
our studies. We leave investigation of possible gender effects
as future work.

And, lastly, we conduct the user study in an online sim-
ulation environment without a further offline and real-time
RLfD test. Though the simulation is common practice to
evaluate the idea in RLfD, the participants do not have any

control over the teaching process. How the participantsmight
reshape future demonstration based on the robot’s engage-
ment feedback needs further investigation.

6 Conclusion

In this work, we propose two methods (Instant attention and
Approximate imitation) to generate robots’ learning engage-
ment in RLfD. The Instant attention method automatically
generates the point of attention and the Approximate imi-
tation method produces robot imitation behavior. Based on
the two methods, we investigate the effects of three types
of engagement communication (showing attention, show-
ing imitation, and showing both) via a within-subject user
study. Results suggest that the proposed cues enable robots
to be perceived to be significantly more engaged in the
learning process and behave significantly more acceptably in
RLfD than with no engagement communication. Also, these
engagement cues significantly affect the human participants’
estimation of robots’ learning capabilities and the partici-
pants’ expectation of the learning outcomes, even though
all the robots have no actual learning abilities. In particular,
imitation cue influences instructors’ perceptions significantly
more than attention cue, while the hybrid cues significantly
outperform a single cue. We also find that showing gesture
or combined engagement significantly improves instructors’
assessments of demonstration qualities. This paper takes the
first step to reveal the potential effects of communicating
engagement on humans in RLfD.
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