
Figure 1: The pull process

Exploring How Software Developers
Work with Mention Bot in GitHub

Zhenhui Peng
The Hong Kong University of
Science and Technology
HKSAR, China
zpengab@connect.ust.hk

Sunghun Kim
The Hong Kong University of
Science and Technology
HKSAR, China
hunkim@cse.ust.hk

Jeehoon Yoo
Data Team, RIDI Corporation
Seoul, NA, Republic of Korea
jeehoon.yoo@ridi.com

Xiaojuan Ma
The Hong Kong University of
Science and Technology
HKSAR, China
mxj@cse.ust.hk

Meng Xia
The Hong Kong University of
Science and Technology
HKSAR, China
iris.xia@connect.ust.hk

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Copyright held by the owner/author(s).
ChineseCHI ’18, April 21–22, 2018, Montreal, QC, Canada
ACM 978-1-4503-6508-6/18/04.
https://doi.org/10.1145/3202667.3202694

Abstract
Recently, major software development platforms have started
to provide automatic reviewer recommendation (ARR) ser-
vices for pull requests, to improve the collaborative cod-
ing review process. However, the user experience of ARR
is under-investigated. In this paper, we use a two-stage
mixed-methods approach to study how software develop-
ers perceive and work with the Facebook mention bot, one
of the most popular ARR bots in GitHub. Specifically, in
Stage I, we conduct archival analysis on projects employing
mention bot and a user survey to investigate the bot’s per-
formance. A year later, in Stage II, we revisit these projects
and conduct additional surveys and interviews with three
user groups: project owners, contributors and reviewers.
Results show that developers appreciate mention bot sav-
ing their effort, but are bothered by its unstable setting and
unbalanced workload allocation. We conclude with design
considerations for improving ARR services.

Author Keywords
Automatic reviewer recommendation services; mixed-methods;
user experience; software development platform.

ACM Classification Keywords
H.5.m [Information interfaces and presentation (e.g., HCI)]:
Miscellaneous

152

https://doi.org/10.1145/3202667.3202694
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3202667.3202694&domain=pdf&date_stamp=2018-04-21


Introduction
More and more developers work collectively on software
development projects in online platforms such as GitHub.
GitHub uses the pull-based development model to imple-
ment the peer review for collaborative coding, which nor-
mally involves three kinds of developers: contributors, re-
viewers and owners (Figure 1). When contributors push
their changes of code to the project repository, pull requests
(PRs) are issued and they must be inspected by review-
ers and approved by owners before the new code gets
merged. Hence, there is an increasing demand for timely
and qualified PR reviews [3]. Automatic reviewer recom-
mendation(ARR) services, such as Facebook mention-bot
which generates its recommendations using code change
history, were introduced to streamline the process.

S1 S2
Archival data
(# of projects)

205 227

Issue comments
(# of comments)

53 90

Surveys (# of
respondents)

52∗ 34∗

Interviews (# of
interviewees)

- 6

Table 1: Data summary of two
stages. ∗S1’s respondents serve
as both contributors and reviewers,
while S2’s respondents are either
project owners, reviewers or
contributors.

Response time #
Reduced 25
Increased 6
No difference 124

Table 2: We compared the
response time in the PRBot and
PRNon−bot groups using
Mann-Whitney-Wilcoxon test.

Existing research on ARR services mainly focus on improv-
ing their accuracy, response time and response rate [1, 3].
However, little research has looked into the user experi-
ences of and interaction among different stakeholders in-
volved in the process (Figure 1), which has a great influ-
ence on designing usable recommendation services. For
example, Marlow et al. [2] found that GitHub reviewers tend
to examine contributors’ profiles before deciding on whether
to accept or reject the PR review request. Despite the in-
sightful findings, they did not study the needs from the con-
tributors’ perspective and the process did not involve ARR.
In this paper, we use the mention-bot in GitHub as a lens to

For archival analysis in
Stage I, we exclude projects
with less than four contribu-
tors (since the mention-bot
normally recommends up to
three candidates) and irrel-
evant PRs (e.g. not closed).
We finally have 64,937 PRs
(9,413 call mention-bot) from
155 projects.

explore 1) how developers perceive and work with mention-
bot in practice, and 2) what are the most critical needs for
different types of users involved in ARR services.

Two-Stage Mixed-Method Investigation
We take a two-stage mixed-method approach to better un-
derstand user experience (Table 1). In Stage I (2015.11 to
2016.06), we identify 205 projects employing mention-bot.

In Stage II (2016.07 to 2017.08), we revisit the 205 projects
as well as 22 projects that newly employ mention-bot (Ta-
ble 4). In both stages, to gain an in-depth understanding
of why people use/do not use mention-bot and what they
expect from an ARR service, we collect related issue com-
ments in GitHub and invite GitHub developers by email to
take our surveys or interviews.

Stage I. (1)Performance. We first investigate the response
rate and response time (T1stResponse − TSubmitPR) of re-
viewers suggested by mention-bot based on archival data.
For each PR that mention-bot comments on, we count
it as a hit if at least one of the recommended reviewers
show up. Overall the average response rate across the 155
projects is 75.37% (SD = 26.92%). For each project, we di-
vide PRs into the two groups by whether the mention-bot
is called, and compare their average response time (Ta-
ble 2). The average response time of the six projects whose
PRTimeNon−bot < PRTimeBot is about 1.7 hours (SD =
5.14), while that of the 25 projects whose PRTimeNon−bot

> PRTimeBot is around 9.45 hours (SD = 74.01). This
suggests that mention-bot is more likely to reduce the re-
sponse time in less active projects. The survey mainly asks
participants about mention-bot’s perceived usefulness and
their favorite features(Figure 2). Respondents agree that
mention-bot recommends appropriate reviewers (about
75.0%), and the reduction in effort in identifying reviewers is
appreciated most (71.1%). (2)Likability. Developers show
diverse likability of the mention-bot in the issue comments
(25 positive, 20 negative and 8 neutral). The developers
seem to like its core features “Reviewer recommendation”
and “Automatic notification” (favored by 83.1% and 60.4%
in the surveys, respectively). However, some developers
“don’t want to receive any notifications for this repository as
they are not collaborators there” (C1). Apart from its insen-
sitivity to context, mention-bot’s unbalanced workload allo-

153



Contents # Details
Benefits 5 Automatic notification; reviewer recommendation; involve more reviews in
Unbalanced workload allocation 9 The same people; aggressive notification; want to be added in blacklist
Bugs 12 Configuration problem; ignore the config. file; not active
Suggestions 9 Turn it into plug-in; recommend experts; whitelist; provide some links
Alternatives 8 GitHub “suggested reviewers”; CODEOWNERS; dwylbot

Table 3: Contents showed in some comments in Stage II

cation is a burden to some reviewers and discourages oth-
ers (“It’s almost always recommending the same person in
our project which is not really that helpful.” (C2)). The “En-
able/disable notification for certain PRs/people” feature of
the mention-bot is designed to resolve the aforementioned
issues, but its unfriendly configuration design intimidates
many users (only 37.5% of the survey respondents like it).Figure 2: Perceived usefulness in

Stage I. a.Appropriateness
b.Contributors get faster response
c.Reviewers respond faster d.Save
efforts to identify reviewers & e.
Explore PRs. Point from 5 to 1
represent from Strongly agree to
Strongly disagree.

Status # of projects
Removed 22
Still use 30
Disappeared 11
No records 142∗

Newly add 22

Table 4: Mention-bot’s status in the
projects in Stage II. ∗ “No records”
means that no words in the project
explicitly indicate that it is still
running or it has been removed.

Stage II. Perception of different user groups. Table 3
summarizes some of the 90 related issue comments in
Stage II. Across all user groups in the survey, we ask re-
spondents to rate the perceived usefulness and annoy-
ance of the mention-bot as well as the efficacy of each
feature on a 5-point Likert scale (1 being the least). Over-
all, mention-bot users “find it useful” (4.08, SD = 0.64).
The project owners employ mention-bot mostly for its “effi-
ciency” (4.29, SD = 0.95) . With mention-bot, owners spend
less effort in “managing the PR process” (3.71, SD = 0.76)
and can “engage developers more in the projects” (3.86,
SD = 0.69). Also, 70% of non-user respondents hope that
the projects they participate in would employ it. Reviewers
who use it agree that “it saves effort in finding proper PRs”.
However, contributors who use mention-bot do not always
think that they can “get faster responses from its recom-
mended reviewers than from others” (3.00, SD = 0.71),
or that “the suggested reviewers certainly provide better

feedback” (3.20, SD = 1.10), or that “it improves interaction
with other developers” (3.20, SD = 1.10). However, they do
agree that it saves efforts in looking for proper reviewers (4,
SD = 1.22), which is consistent with our findings in Stage I.
Six of the survey respondents (I1,2,3,4,5,6) join our semi-
structural online interview and share their user experience
with or without mention-bot (Table 5). Surprisingly, the rea-
son I3,4,5,6 removed mention-bot are quite similar (“GitHub
added the “suggested reviewers" feature which is enough
for our needs” (I3)). The “suggested reviewers” feature is
plugged into the GitHub platform so that users do not need
to configure it by themselves and worry about its instability
(which bothers mention-bot users as showed in Table 3).
However, interviewees also commented that “suggested
reviewers” is not flexible enough for big projects (“The fea-
ture needs permission. The suggested reviewers should be
members of our project, but we want all the 2000 contribu-
tors in our project, and mention-bot suits our needs” (I1)).

Critical Factors and Design Consideration
Simplicity and Stability for Project Owners. We find
that most of the projects just keep the default setting of
mention-bot, and sometimes owners cannot configure it
well (“The configuration added is not working, so I just re-
moved it...” (C3)). Since they tend to “only care about the
PRs and want the bot to simply tell what its capacities are”

154



(I1), we propose that a better ARR service should have an
easier configuration process. For example, the service can
have a log so that project owners can save their settings
and easily reset the configuration to a suitable and stable
state. If the project needs more external contributions, the
owner can use a shortcut to adjust some options to invite
external reviewers.

Figure 3: Perceived usefulness of
features in Stage II. a.Message
Customization b.Explanation of
result c.List of recommended
reviewers d.Delayed time e.
Blacklist. Point from 5 to 1
represent from Extremely useful to
Not useful at all.

I1 project owner, user

I2
reviewer&contributor,
non-user

I3,4,
5,6

project owners, used
but removed it later

Table 5: Status of interviewees.
Note that people accepting our
request are mostly project owners,
which indicates that they are more
concerned about the experience of
ARR services.

Better Transparency for Contributors. According to our
survey in Stage II, contributors tend to check on mention-
bot’s recommendation, and they call for information that can
improve their understanding of why a particular recommen-
dation is made. List of recommended reviewers(78.6%) and
Explanation of the result(71.5%) are perceived as useful
(Figure 3). Therefore, we propose that a better ARR service
should keep their recommendations transparent to contrib-
utors, especially regarding the qualification and availability
of the suggested reviewers (I2). In case contributors would
like to manually select reviewers, the ARR service can pro-
vide a ranked list of the potential reviewers, each with a
brief profile summarizing their role in the project, specialty,
recent activeness, current workload, and so on. Flexible
Notification Preference Settings for Reviewers. Review-
ers are bothered the most by excessive PR review notifi-
cations. When reviewers are already overloaded, they “do
not want to receive more review requests” (I2). However,
only project owners can set the rules to filter reviewers in
the candidate pool in mention-bot. Hence, we propose that
a better ARR service should allow reviewers to specify per-
sonal notification preferences on their side. Reviewers can
change their status to “Do not disturb” when occupied, de-
clare types of uninterested PRs, and set a maximum PR
quota. In addition, similar to suggestions showed in the
comments (Table 3), the notifications can provide useful
links and a brief introduction of the contributors.

Conclusion and Future Work
In this paper, we explore how people work with mention
bot in GitHub to give hints on evaluating user experience
of ARR services. We use a two-stage mixed-method ap-
proach to investigate the practical usefulness of mention
bot and the critical needs of different types of users. Our
Stage I investigation showed that mention bot saved con-
tributors’ effort in identifying proper reviewers (75.0%). In
Stage II, we found that mention bot’s adoption suffers from
bugs, unbalanced workload allocation and other ARR alter-
natives. According to our survey and interview with project
owners, contributors and reviewers, we propose a set of
considerations for designing more user-friendly ARR ser-
vices. In the future, we plan to improve the coverage and
generality of our study, develop an ARR service based on
the findings, and test its user experience in the wild.

REFERENCES
1. Jing Jiang, Jia-Huan He, and Xue-Yuan Chen. 2015.

CoreDevRec: Automatic Core Member
Recommendation for Contribution Evaluation. Journal
of Computer Science and Technology 30, 5 (2015),
998–1016.

2. Jennifer Marlow, Laura Dabbish, and Jim Herbsleb.
2013. Impression Formation in Online Peer Production:
Activity Traces and Personal Profiles in Github. In Proc.
CSCW ’13. ACM, New York, NY, USA, 117–128. DOI:
http://dx.doi.org/10.1145/2441776.2441792

3. Yue Yu, Huaimin Wang, Gang Yin, and Tao Wang.
2016. Reviewer recommendation for pull-requests in
GitHub: What can we learn from code review and bug
assignment? Information and Software Technology 74
(2016), 204–218.

155

http://dx.doi.org/10.1145/2441776.2441792

	Introduction
	Two-Stage Mixed-Method Investigation
	Critical Factors and Design Consideration
	Conclusion and Future Work
	REFERENCES 



