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ABSTRACT
Modeling student learning and further predicting the performance
is a well-established task in online learning and is crucial to person-
alized education by recommending different learning resources to
different students based on their needs. Interactive online question
pools (e.g., educational game platforms), an important component
of online education, have become increasingly popular in recent
years. However, most existing work on student performance pre-
diction targets at online learning platforms with a well-structured
curriculum, predefined question order and accurate knowledge tags
provided by domain experts. It remains unclear how to conduct
student performance prediction in interactive online question pools
without such well-organized question orders or knowledge tags by
experts. In this paper, we propose a novel approach to boost student
performance prediction in interactive online question pools by fur-
ther considering student interaction features and the similarity be-
tween questions. Specifically, we introduce new features (e.g., think
time, first attempt, and first drag-and-drop) based on student mouse
movement trajectories to delineate students’ problem-solving de-
tails. In addition, heterogeneous information network is applied
to integrating students’ historical problem-solving information on
similar questions, enhancing student performance predictions on a
new question. We evaluate the proposed approach on the dataset
from a real-world interactive question pool using four typical ma-
chine learning models. The result shows that our approach can
achieve a much higher accuracy for student performance predic-
tion in interactive online question pools than the traditional way
of only using the statistical features (e.g., students’ historical ques-
tion scores) in various models. We further discuss the performance
consistency of our approach across different prediction models
and question classes, as well as the importance of the proposed
interaction features in detail.

CCS CONCEPTS
• Applied computing → E-learning; Interactive learning en-
vironments; Learningmanagement systems; •Computingmethod-
ologies → Feature selection.
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1 INTRODUCTION
With the rapid development of digital technologies, online educa-
tion has become increasingly popular in the past decade, which
provides students with easy access to various online learning mate-
rials such as massive open online courses (MOOCs) and different
online question pools. The availability of these online learningmate-
rials and student activity logs has made it possible to model student
learning and further predict their performance [20]. It has become
a well-established task in computer-aided education, since student
performance prediction can help course designers to better handle
the possible dropout, improve the retention rate of online learning
platforms [22], and provide students with personalized education
to enhance student learning by recommending different learning
resources to them based on their different needs [12, 28, 38, 44].

Online question pools, consisting of a collection of questions,
have become increasingly popular for helping students to practice
their knowledge and skills 1. For example, there have been many
popular online question pools that provide students hands-on ex-
ercises to practice their programming skills (e.g., LeetCode2, Top-
coder3) and mathematics skills (e.g., Learnlex4, Math Playground5).
The interactive online question pool, as one kind of the online ques-
tion pools, comprises interactive questions where interactions such
as mouse movement and drag-and-drop are often needed. For ex-
ample, some online educational games have been designed to in-
volve user interactions to make it a fun way to practice important
skills [18] 6. Despite the popularity and importance of interactive
online question pools, little work has been done to model student
learning and predict their performance in online question pools.

Student performance prediction has been widely explored in ed-
ucation community and is a critical step for downstream tasks, such
as recommending an adaptive learning path [39] or assisting stu-
dents at an early stage [7]. However, most of them focus on student
performance prediction on the MOOCs platforms (e.g, Coursera,
EdX, Khan Academy), and little work has been done on interactive
1https://help.blackboard.com/
2https://leetcode.com/
3https://www.topcoder.com/
4https://mad.learnlex.com/login
5https://www.mathplayground.com/
6https://www.weareteachers.com/
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online question pools. Compared with student performance predic-
tion on MOOCs platforms, it is more challenging to predict student
performance on interactive online question pools due to two major
reasons. First, there is no predefined question order that users
can follow; students need to explore the questions by themselves
when working on the interactive online question pools. Moreover,
for some interactive online question pools, their questions only
have rough knowledge tags annotated by domain experts, which
are not accurate enough to evaluate the similarity among questions.
As will be introduced in Section 2.1, the major models for student
performance prediction include Bayesian knowledge tracing [9, 25],
deep knowledge tracing [28, 44] and traditional machine learning
models [7, 22, 24]. However, almost all of these models intrinsically
depend on the course curriculum or the predefined question order
and Bayesian knowledge tracing models also require knowledge
tags, making them inapplicable to student performance prediction
on interactive online question pools.

To handle the above challenges, we propose a novel method by
introducing a set of new features based on interactions between stu-
dents and questions to perform student performance prediction in
interactive online question pools. Specifically, we utilize the mouse
movement trajectories, which consists of the mouse interaction
timestamp, mouse event type and mouse coordinates, to predict
student performance. Such mouse movement trajectories represent
the problem-solving path of a student for each question. Inspired
by prior researchers in education and psychology fields [31, 35],
which shows that student’s “think” time on questions affect their
performance, we propose a set of novel features (e.g., think time,
first attempt, first drag-and-drop) based on mouse movement trajec-
tories to predict student performance in interactive online question
pools. Specifically, we define and measure the time between when
students see the question and the time that they start solving the
questions as the “think time”. In addition, attributes related to the
first attempt and first drag-and-drop are also extracted. Further,
since there is no predefined question order in interactive online
question pools, different students can work on the questions in dif-
ferent orders.We apply a heterogeneous information network (HIN)
to calculate the similarity among questions, in an effort to incor-
porate students’ problem-solving history to enhance performance
prediction in online question pools. We evaluated our approach
on a real-world dataset that are collected from a K-12 interactive
mathematical question pool Learnlex. We tested our new feature set
on four typical multiple-classification machine learning models –
Logistic Regression (LR), Gradient Boosting Decision Tree (GBDT),
Support Vector Machine (SVM) and Random Forest (RF).

The contributions of this paper can be summarized as follows.

• We introduce novel features based on student mouse move-
ment trajectories to predict student performance in interac-
tive online question pools. Features like the “think time” can
reveal students’ thinking details when working on a specific
question.

• We propose a novel approach based on HIN to incorporate
students’ historical problem-solving information on similar
questions into the performance prediction on a new question.

• We evaluate our approach using real-world dataset and
compare with state-of-the-art baseline features on typical

multiple-classification machine learning algorithms. The 4-
class prediction result shows that our approach achieves
a much higher performance prediction accuracy than the
baseline features in various models, demonstrating the effec-
tiveness of the proposed approach.

2 RELATEDWORK
The related work can be categorized into three groups: student
performance prediction, problem-solving feature extraction, and
question similarity calculation.

2.1 Student Performance Prediction
There are mainly two ways in performance prediction: the knowl-
edge tracing and the traditional machine learning approach (e.g.,
Multiple regression). Methods based on or extended from knowl-
edge tracing usually utilize a computational model of the effect of
practice on KCs (i.e. knowledge components, which may include
skills, concepts or facts) as the way to individually monitor and infer
students’ learning performance [29]. Bayesian Knowledge Tracing
(BKT) [9] was the most popular approach to model students’ learn-
ing process, where each learning concept was represented as a
binary variable to indicate whether or not the student has mas-
tered the learning concept or not. However, this method gives little
consideration to the individual students’ learning ability. Learning
Factors Analysis (LFA) [3] extended the basic formulation by adding
the factor–learning rate. More factors were taken into consideration
by later methods, such as Performance Factors Analysis (PFA) [26],
which further incorporated the students’ responses to the questions
(correct or incorrect). Additive Factors Analysis Model (AFM) [8]
added the step duration (time between actions). The performance
was improving as more factors are considered. However, the draw-
back of the methods based on the knowledge tracing is that they
need a requirement for accurate concept labeling. Though recent
studies showed that there is a possibility to make use of deep learn-
ing algorithm (i.e., Recurrent Neural Network) to predict students’
performance on consecutive questions, the performance highly
relied on the predefined question order (i.e., most of the students
followed the same order to solve questions) [28].

For questions in question pools, they have no predefined order
and no accurate concept labels [39], which hinders the way to easily
adapt methods based on the knowledge tracing. Many studies have
used traditional machine learning methods to predict the drop out
rate or the course grade [7, 19, 21–23]. For example, Naive Bayes
(NB), RF, GBDT, SVM, k-Nearest Neighbour (KNN) with Dynamic
Time Warping (DTW) distance were used to predict college stu-
dents’ dropout [22]. Chen et al. [7] also used Logistic Regression and
Nearest-neighbors to predict the dropout in MOOCs. Kabakchieva
and Dorina [19] compared different machine learning models (De-
cision tree classifier, Bayesian classifiers, KNN classifier) for college
students for grade prediction. Regardless of the chosen algorithm,
much of the performance of a prediction model depended on the
proper selection of feature vectors [22] and the transformation of
feature vectors [17]. To achieve a higher accuracy of student per-
formance prediction in the interactive online question pools, we
need to extract more meaningful features that are closely related
to students problem-solving capabilities.
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2.2 Problem-Solving Feature Extraction
Many problem-solving features have been extracted and applied to
the student performance prediction on questions. Among them, the
submission record and the clickstream are two data types that are
studied most. Xia et al. [39] used the submission records to model
how a student solves a particular problem in online question pools,
e.g., solving the problem with one submission or many submissions.
Chen and Qu [6, 30] extracted features of the clcikstream data of
watching MOOC videos and analyzed its correlation with final
grades. Chounta and Carvalho [8] proposed the use of the response
time (i.e., the time between seeing the questions and giving a re-
sponse to tutor’s question or task) to predict students’ performance
for unseen tasks in intelligent tutoring systems. The result showed
that the quadratic response time parameter outperformed the linear
response time parameter in the prediction tasks.

However, students’ problem-solving behavior is a complex pro-
cess involving different stages – problem decomposition, abstrac-
tion, and execution [35, 41]. It is critical to figure out different stages
to better understand and predict their influence on individuals’ per-
formance [40] rather than treating it as a whole solving period.
In the interactive question pool we study, more detailed mouse
movement sequences (i.e., the trajectories with both position and
timestamp information) are collected, which reflect the students’
problem-solving ability in extensive details. Stahl et al. [35] intro-
duced “think time”, which is a period of uninterrupted silence time
given by the teacher in class and all students are asked to complete
appropriate information processing tasks. Different students may
have different abilities in processing the question information be-
fore they start to solve it [38]. Inspired by these previous work, we
propose extracting “think time” from students’ mouse movement
trajectories to delineate the thinking process and problem-solving
capabilities of different students.

2.3 Question Similarity Calculation
Question similarity is one of the key features to infer students’
performance in previous researches. For example, When students
repeatedly solve questions under the same topic, they may improve
the mastery on this learning concept [3, 9, 26]. A wide range of
work has been done to calculate question similarity when there
is no accurate expert annotation of the problems. One branch of
work calculated the semantic similarity of questions based on Nat-
ural Language Processing (NLP). For example, Song et al. [34] first
identified keywords in questions, and then calculated semantic
similarity between questions based on the keywords. They also
extended the semantic similarity to statistic similarity, which was
calculated using the cosine similarity between two question vec-
tors. Each question vector was a string of binary bits with each bit
indicating the existence of a certain word. Their results showed
that the combination of semantic similarity and statistic similarity
could achieve a better performance than each individual algorithm.
Similarly, textual similarities [4] and question type similarity [1]
were also proposed to further improve the performance prediction.

However, all these methods require accurate knowledge tags and
abundant text information about the questions. The questions in the
interactive math question pools usually use simple description to
describe the problem background without showing the knowledge

tested explicitly. Another branch of work tried to calculate the ques-
tion similarity according to the interaction data between students
and problems. For example, Xia et al. [39] calculated the question
similarity based on the submission types (e.g., successful submis-
sion after one submission or many submissions). However, more
detailed student interaction information (e.g., mouse movement
trajectories), which intrinsically reflects students’ problem-solving
habits and capabilities, is not considered. HIN is defined as the infor-
mation network with more than one type of objects or relationship
between objects, which is used to describe the complex structure
of information in the real world. Bibliographic information net-
work and Twitter information network are examples of HIN [36].
In this paper, we use the HIN to incorporate different information
(e.g., students’ historical scores, mouse movement trajectories) into
calculating the question similarity.

3 CONTEXT
Our study is built on the dataset collected from an interactive online
math question pool. This section introduces the interactive math
questions, the collected data and the overall student performance
prediction framework of our study.

3.1 Interactive Math Question
The platformwe cooperate with is an interactive question pool used
by more than 40,000 students from 30+ primary and junior high
schools in Hong Kong. There are 1,720 interactive math questions
on the platform and each question has labels from math dimension,
difficulty, and grade. The math dimension indicates the general
knowledge domain of the question. Difficulty is a five-star rating
ranging from 1-5 (easy to hard), which is predefined by several
education experts and the questionmaker.Grade represents the year
of study this question is designed for. Figure 1 shows an example of
the interactive math question in the question pool, students need
to use their mouse to drag the red dot to fulfill the requirement and
get a score ranging from 0 to 100. Since the scores are discrete and
possible scores of each question are not the same, we manage to
map the original score ranging from 0 to 100 to 4 score classes (0-3).

Figure 1: An example of the interactive math question.

3.2 Data Collection
The data we collected are historical score records and mouse move-
ment trajectories. In total, we collected 858,115 historical score
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Dataset #Questions #Trajectories #Students

ADD 61 1764 724
DGDD 64 2610 562

Table 1: The statistics of two datasets: ADD (area dimen-
sion dataset) and DGDD (deductive-geometry dimension
dataset). Both consist of students’ problem-solving records
from April 12, 2019 to June 27, 2019.

records from September 13, 2017 to June 27, 2019 in total. We devel-
oped a tool to collect students’ mouse movement trajectories, which
included the mouse events (mouse move, mouse down, mouse drag
and mouse up), the timestamps, and the positions of the mouse dur-
ing the whole problem-solving process. We selected two question
sets that contains rich mouse interactions from two math dimen-
sions (Area and Deductive geometry). Table 1 shows the statistical
information of these two question sets. There are 61 and 64 ques-
tions in these two categories respectively. 724 students produced
1764 mouse movement trajectories in the Area and 562 students
made 2610 mouse movement trajectories in Deductive geometry.
Note that the system allows students to submit up to two times for
each question, our research goal in this paper is to predict students’
score on the first submission of the question.

3.3 Overall Prediction Framework
In order to conduct a state-of-the-art machine learning prediction
experiment, we survey existing studies for the features used in
student performance prediction [22, 24], mouse trajectory feature
definition [33, 42], and possible methods in question similarity
calculation [1, 4, 34, 36, 37]. We summarize this knowledge with
our dataset and task, then we propose our prediction framework
in Figure 2. It mainly contains three modules: data collection and
preprocessing, feature extraction, and prediction and evaluation.

Figure 2: The prediction framework contains threemodules:
data collection & preprocessing module, feature extraction
module, and prediction & evaluation module. The blocks
highlighted in yellow and green correspond to the major
contributions of this paper.

In the feature extraction module, as suggested by previous stud-
ies [13, 15], students’ recent performance may have a great impact

on prediction. We then extract the historical performance statisti-
cal features and recent performance statistical features from the
records. In addition, we summarize each question’s basic infor-
mation (e.g., grade, difficulty) as well as the number of total sub-
missions and second submissions. Further more, mouse movement
trajectories are processed to representation features including think-
time, first drag-and-drop, first attempt, and other problem-solving
related features. In addition, we combine these features and statisti-
cal features (e.g., score) and build the problem-solving information
network, a HIN, on them to calculate the question similarity matrix.

In the prediction and evaluation module, we test these features
on four typical machine learning models to compare their per-
formances with and without the mouse movement features. Simi-
lar to previous research [14, 22], we compare prediction accuracy,
weighted F1 and ROC curves and feature importance score in GBDT
to evaluate and discuss our method.

4 FEATURE EXTRACTION
In this section, we introduce the feature extraction module in detail.
Specifically, we first explain how to detect change points in the
mouse movement trajectories, based on which we illustrate how
we extract mouse movement features (i.e., think time, first drag-
and-drop, and first attempt). We then introduce other statistical
features like students’ historical performance features. Lastly, we
describe how to use a HIN to incorporate both statistical features
and mouse movement features to calculate the similarities between
questions. Assuming that students often have similar performance
on similar questions, we integrate features of similar questions to
further enhance the performance prediction on a new question.

Figure 3: A sample mouse movement trajectory and the
scheme diagram of change point detection algorithm. The
1st change point is both the think time end point and the
first attempt start point. The 2nd change point is the first
attempt end point.

4.1 Change Point Detection
To infer students’ problem-solving capabilities from the mouse
movement trajectories, we need to identify different problem-solving
stages [40, 41]. The change points are the time points where there is
an abrupt change in the mouse movement trajectory to distinguish
different problem-solving stages in our context. As shown in Fig-
ure 3, we split the mouse movement trajectory into three subparts
using two change points: the think time stage, the first attempt
stage (i.e., the first action episode after the thinking period) and the
following actions stage. Think time is a stage that starts from when
a student opens the question and ends at the students use the mouse
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to solve the question with actual interactions [35]. The first attempt
stage is a series of mouse drag events trying to solve the problem
after the think stage and ends when the frequency of mouse drag
events becomes low. The first change point can differentiate the
think time stage from the first attempt stage and the second change
point is the boundary of the first attempt stage and the following
actions stage. A straightforward way of change point detection is
to use the first movement of the mouse as a signal that the student
starts to solve the question. However, in the real world, it is not
always true that the first mouse movement represents the starting
point of solving a problem. After analyzing the mouse movement
trajectories, we find that there may exist a short drag-and-drop or
click bymistake, whichmakes it seem like the student starts to solve
questions. To detect the most probable start and end time points of
each stage, we propose the change point detection algorithm.

Figure 4: An example of mouse movement trajectories in
problem-solving process.

We use the sliding window to detect the change points, which is
a common method for abrupt change detection in the time series
data [2]. It has two key parameters: window size and detection
threshold. The detection threshold can be observed through the test
data or sometimes random selection [2]. For a mouse movement
trajectory, we define the total mouse events as Ct , the total mouse
drag events as Cd . The event density in trajectory is defined as:

ρ = Cd/Ct (1)

We count the mouse drag events and calculate the mouse drag event
density in sliding window and compare the value of density with
the threshold. The scheme of change detection is as follows:

• Move the window from the beginning of the mouse events
sequence, when the first time ρ is higher than the threshold,
the first point of the sliding window is defined as the first
change point.

• Continue sliding window until ρ is lower than the threshold,
the last point of the sliding window is defined as the second
change point.

4.2 Mouse Movement Features
Student interaction data, especially mouse movement data, con-
tains massive information [16, 33]. We extract two sets of features:
TFF (think time, first attempt, and first drag-and-drop) and MDSM

Type Feature Description

Think time

Time length Time between opening the web
page and the first change point.

Time percent Percentage of think time in
time length of the whole trajectory.

Event length Mouse event number
in think time.

Event percent Percentage of mouse event
number in the whole trajectory.

First attempt Event end
index

Mouse event number during
the first attempt.

First drag-
and-drop

Time length Time between opening the web
page to the first mouse drag.

Time percent Percentage of first drag-and-drop
in time length of the whole trajectory.

Event start
index

Mouse event number before
first drag-and-drop starts.

Event percent
Percentage of event number
before first drag-and-drop starts
in the whole trajectory..

Event end
index

Mouse event number when first
drag-and-drop ends.

K First drag-and-drop trajectory curvature.

D First drag-and-drop trajectory length.

Delta First drag-and-drop chord length.

Table 2: TFF feature table. TFF: think time, first attempt, and
first drag-and-drop.

(mouse drag statistical measurements) based on previous stud-
ies [33, 35, 42]. We use TFF and MDSM to model students’ initial
and overall behaviors in a problem-solving process, respectively.

As for the TFF, the think time and the first attempt have been
introduced in Section 4.1. Drag-and-drops is a series of consecutive
mouse drag events that start with the mouse down and end with
the mouse up and thus the first drag-and-drop is the first drag event
with a mouse down and a mouse up. Table 2 shows the detailed
attributes of the features in TFF.

As for MDSM, we define the following features to represent
mouse drag statistical measurements as Figure 4 shows.

• D: Drag-and-drop trajectory length.
• Delta: Drag-and-drop chord length.
• K : Drag-and-drop trajectory curvature (Delta/D).
• TDraд : Drag-and-drop duration.
• TIdle : Drag-and-drops interval.
• tIdle : Mouse events interval.

However, there may be more than one drag-and-drop in a trajec-
tory. To extract useful information in drag-and-drops, we use three
statistical methods median, mean and interquartile range (IQR), to
measure it (Table 3). Besides the features above, we also build other
features to measure the whole trajectory, including the number of
drag-and-drops, total time, total mouse events and mean, median,
IQR of mouse events in every second.
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K D Tdraд Delta tIdle TIdle

Median The feature’s median value in its value list of the whole trajectory.
IQR The feature’s IQR in its value list of the whole trajectory.
Mean The feature’s mean value in its value list of the whole trajectory.

Table 3: Three statistical measures for six features. IQR: In-
terquartile range. D: Drag-and-drop trajectory length, Delta:
Drag-and-drop chord length, K : Drag-and-drop trajectory
curvature, Tdraд : Drag-and-drop duration, TIdle : Drag-and-
drops interval and tIdle : Mouse events interval.

4.3 Other Statistical Features
Information such as score records and score distribution on ques-
tions can also reflect a student’s ability and the question difficulty
for all the students. Features extracted from such records are widely
applied in prediction of students’ performance, for example, Yu
et al. [45] used students’ recently solved questions to construct
temporal features and Manrique et al. introduced average grades of
students to predict their dropout rates [22]. To make full use of the
information, we take the cross feature approach. A cross feature is
a synthetic feature formed by multiplying (crossing) two or more
features. Crossing combinations of features can provide predictive
abilities beyond what those features can provide individually [10].
Thus, we apply the cross feature method to questions’ and students’
basic statistics. As Table 4 shows, we have three parts of statisti-
cal features: question statistics, student statistics, and the recent
statistics of a student.

We use the expression A × B to represent the cross feature of A
and B, expression #C in [ E ] to represent the numbers of C for each
category or dimension in E and expression %C in [ E ] to represent
the proportion of C for each category or dimension in E. For exam-
ple, in students statistics, %Submission in [math dimension × grade
× difficulty] represents the proportion of a student’s submission
number in each math dimension with a specific grade and difficulty
level.

4.4 Problem-solving Information Network and
Similarity Calculation

To predict the performance of a student si on a question qx us-
ing mouse movement features, an intrinsic requirement is that we
should have the mouse movement trajectories. However, they are
not available before a student actually finishes the question. Prior
studies [32, 43] have shown that a student’s performances on sim-
ilar questions are often similar. Therefore, we propose finding a
question qy similar to the question qx and using its mouse move-
ment features extracted from the trajectories as part of the feature
vectors to predict a student’s performance on qx .

The similarity between questions can be evaluated from differ-
ent perspectives (e.g., difficulty level, question content, student
mouse movement interactions, etc.). For example, for two questions
that examine the same knowledge, their difficulty levels and the
required problem-solving skills can be significantly different for
different students. To more accurately delineate the similarity be-
tween any two questions, we use students’ interactions (e.g., mouse
movement trajectories) as the bridge from one question to another
question. Specifically, we build a network consisting of both inter-
actions between students and questions and the intrinsic attributes

Feature Description
Question statistics

Math dimension Question’s domain knowledge (e.g, area).
Grade Student’s grade that the question suggests.
Difficulty Question’s difficulty given by experts.
#Total submissions Total number of submissions in question.
#2nd submissions Total number of second submissions in question.
%Submissions in
[score class] Proportion of submissions in each score class.

Student statistics
#Total submissions Student’s total submissions in history.
#2nd submissions Student ’s total second submissions in history.
%Submissions in
[math dimension ×

grade × difficulty]

Student’s proportion of submissions in each
specific math dimension, grade and
difficulty.

1stAvgScore in
[math dimension ×

grade × difficulty]

Student’s first submission average score in
each specific math dimension with assigned
specific grade and difficulty.
Student recent statistics

#Submissions in
[math dimension]

Number of submissions in each math dimension
in past N days.

#Submissions in
[grade × difficulty]

Number of submissions in each grade and
difficulty in past N days.

Average score in
[math dimension]

Average score in each math dimension in past
N days.

Average score in
[grade × difficulty]

Average score in each grade and difficulty in
past N days.

Score std in
[math dimension]

Score standard deviation of each math
dimension in past N days.

Score std in
[grade × difficulty]

Score standard deviation of each grade and
difficulty in past N days.

Table 4: Other statistical features: questions statistics, stu-
dent statistics and student recent statistics. Symbol: #: Num-
ber of records, %: Proportion of records. Expression A × B:
cross features of A and B. Expression C in [ E ]: calculate C
for each category or dimension in E.

of questions to calculate similarity for each pair of questions. Such a
network is called problem-solving information network in this paper.

4.4.1 Problem-solving Information Network Structure. The problem-
solving information network, a typical bipartite HIN, is established
between two kinds of objects, students (S) and questions (Q). For
each question q ∈ Q , it has links to several students and the link
between a questionq and a student s is defined as solving (s solvesq)
or solved by (q is solved by s). The network schema of the problem-
solving network is shown in Figure 5 (a) and the symmetric meta-
path in our network is defined as Question-Student-Question (QSQ),
which denotes the relationship between two questions that have
been solved by the same student.

4.4.2 Similarity Calculation. Sun et al. [37] proposed a meta-path
based similarity framework and the framework on meta path P is
defined as:

s(a,b) =
∑
p∈P

f (p) (2)

where f (p) denotes a measure defined on a path instance p ∈ P

from an object a to another object b.
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Figure 5: The schematic diagrams of problem-solving infor-
mation network. (a) Network schema, (b) Meta path: QSQ ,
and (c) A sample of problem-solving information network.

Following this guideline, we propose applying such a meta-path
based similarity framework to our application scenario and further
measure the similarity of a question qx and another question qy
under a meta path QSQ in the problem-solving network (Figure 5).
Each path instance qx siqy ∈ QSQ passing a student si is measured
using the cosine similarity:

f (qx siqy ) =
Featureix · Featureiy

∥Featureix∥∥Featureiy∥
(3)

where Featureix is the feature vector, consisting of both mouse
movement features generated based on the mouse trajectory of the
submission on qx by a student si (as introduced in Section 4.2) and
the score of his/her submission.

We normalize the similarity score of each path instance qx siqy
by using the sum of the similarity scores of all the students who
have finished both questions qx ,qy , guaranteeing that every score
in our problem-solving network is between 0 and 1. Thus, the final
similarity between qx and qy on meta path QSQ is defined as:

s(qx ,qy ) =

∑
qx siqy ∈QSQ

Featureix ·Featureiy
∥Featureix ∥ ∥Featureiy ∥��{qx siqy : qx siqy ∈ QSQ}

�� (4)

5 EXPERIMENTS
5.1 Experiment Setup
Our experiment was conducted on the two datasets introduced in
Table 1. To make a 4-class classification, we applied four classical
multi-class classification machine learning models, i.e., GBDT, RF,
SVM, and LR, on our datasets. First, we built question statistics and
student statistics (Table 4) with all records before April 12, 2019. We
then calculated the student recent statistics for each record after
April 12, 2019, using the data in the past 14 days of that record.
For those submissions without recent records, we assigned -1 to all
recent performance features. The features listed in Table 4 served
as features in baseline method.

Dataset Method GBDT RF SVM LR

ADD
Ours 0.88 0.87 0.85 0.87

baseline 0.79 0.85 0.77 0.83

ABROCA 0.09 0.02 0.08 0.04

DGDD
Ours 0.94 0.90 0.91 0.91

baseline 0.88 0.88 0.89 0.89

ABROCA 0.06 0.02 0.02 0.02

Table 5: AUC and ABROCA value in two datasets. ADD:
area dimension question dataset. DGDD: deductive geome-
try dimension question dataset. Ours: our proposedmethod.
ABROCA: Area between baseline curve and Ours curve.

Based on the proposed mouse movement features, similarity ma-
trixMsim of each dataset was extracted according to the problem-
solving network and related similarity calculation algorithms men-
tioned in Section 4.4. Then for each first submission qx − si in
the dataset, we searchedMsim to find question qy that was most
similar to qx (with a similarity threshold of 0.8 in the experiment
on ADD, 0.7 in the experiment on DGDD) and is solved by the
same student sm . If there was no similar question with qx done by
si , this submission record would be discarded. Finally, the feature
vector of qx −si in our proposed method was composed of qx ’s and
si ’s historical statistical features, si ’s recent performance feature in
Table 4, qy ’s mouse movement features including features in Table
2 and Table 3, qy ’s score class and the similarity score between qx
and qy .

Since we discarded submissions with no similar questions, the
dataset of proposed method for training and testing is not of the
same size as the original dataset. We used the same submission
records in the baseline and the proposed methods. In addition,
to reduce the effect of imbalanced class distribution, we applied
SMOTE over-sampling algorithm to increase the size of minority
classes in the training set [5]. As for hyperparameter tuning in the
four algorithms, grid-search was conducted in model training on
our datasets [22]. The following parameters have been tested with
the best values in bold:

• Number of trees for GBDT and RF: 50, 100, 150, 200, 250,
300, 350

• Max depth of trees for GBDT and RF: 5, 10, 15, 20, 25
• Learning rate of GBDT: 1e-4, 1e-3, 1e-2, 5e-2, 0.1, 0.2
• Penalty parameter of SVM (C): 0.1, 1, 5, 10

After fixing our hyperparameters, each model performed the
task of predicting students’ performance on two datasets using the
baseline method and our proposed method for 10 times each and
the average accuracy scores and weighted F1 scores are in Table 6.

5.2 Performance Comparison
The results for our dataset ADD and DGDD are in Table 6. From the
perspectives of accuracy and weighted F1 scores, we can see that
in both two datasets, GBDT, RF, and SVM performed better in our
proposedmethod than in the baseline. In addition, the performances
of our method and the baseline are similar in both datasets.

Besides the overall accuracy, we further evaluate the results
based on the Receiver Operating Characteristic (ROC) curve. The
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Dataset Method GBDT RF SVM LR

Accuracy Weighted F1 Accuracy Weighted F1 Accuracy Weighted F1 Accuracy Weighted F1

ADD Baseline 0.555 0.555 0.669 0.659 0.430 0.492 0.650 0.670

Ours 0.753 0.749 0.690 0.667 0.650 0.677 0.649 0.659

DGDD Baseline 0.600 0.597 0.664 0.663 0.600 0.611 0.720 0.731

Ours 0.833 0.805 0.780 0.767 0.633 0.643 0.733 0.744

Table 6: Results of the accuracy and weighted F1 over four typical machine learning algorithms (GBDT, RF, SVM, and LR) on
the proposed method and the baseline method. ADD: area dimension question dataset. DGDD: deductive geometry dimension
question dataset. Ours: our proposed method.

Figure 6: ROC-AUC curve of two methods on ADD (Area di-
mensionquestion dataset).Gray borders representmean+std
or mean-std. Area between the two curves is ABROCA.

ROC curve is a graph showing the performance of a classification
model at all classification thresholds. The ROC curve is a plot of the
false positive rate and true positive rate. The area under the ROC
curve (AUC) measures the entire two-dimensional area underneath
the entire ROC curve from (0, 0) to (1, 1) [11, 14], which means
AUC ranges from 0 to 1. AUC provides an aggregate measure of
performance across all possible classification, so we use the area
between the proposed method’s ROC curve and the baseline ROC
curve to further compare the performance of our proposed method
with baseline’s, which is called ABROCA in prior work [14]. To
eliminate the randomness of the algorithms, we ran the program
10 times and made amean + std andmean − std ROC-AUC graph
(Figure 6). As Table 5 shows, the ABROCA value is always posi-
tive, this confirms that the aggregate performance of our proposed
method is consistently better than the baseline across different
models. Furthermore, we extended the student score prediction
from a binary classification problem (correct or wrong) to a multi-
ple classification problem (0-3). To further evaluate our method’s
performance in every score class, we selected ADD (area dimension
question dataset) and drew a real-predicted heatmap (Figure 7) for
each algorithm. Specially, the GBDT model provides an importance
score for each feature, which is computed by the normalized sum-
mation of reduction in loss function of each feature and it is also

called Gini importance[27]. The importance score of each feature
ranges from 0 to 1 and a larger importance score indicates that the
corresponding feature is more important in training the model. This
directly helps to learn the importance distribution of our feature
sets. In our method, the importance score of mouse movement fea-
ture set, most similar question’s score class and the similarity score
(39 features) reaches 27.4% among 483 features, which indicates the
mouse movement feature set has significant contribution in GBDT
model.
6 DISCUSSION
The above experiment results demonstrate that our approach can
achieve higher accuracy for predicting student performance pre-
diction in interactive online question pools than using the baseline
features. However, there are still some issues that need further
discussions.

Parameter Configurations Some parameters that need to be
set in the proposed approach and some of these parameters are
empirically chosen after considering different factors. For example,
the sliding window is used to detect the change points (Section 4.1),
where the value of the window size and threshold need to be deter-
mined first. Too large a window size will make themouse drag event
histogram too smooth, while too small a window size may make the
mouse drag event frequency histogram too steep. Both have a nega-
tive effect on change point detection. The corresponding threshold
is also important. We empirically set it as the average mouse drag
density to guarantee that the detected change points are exactly
the actual ones. With similar considerations, we choose only the
question with the highest similarity score and require that the sim-
ilarity score should be at least 0.7, when we try to incorporate the
information of similar questions. Our experiment results provide
support for the effectiveness of the current parameter settings.

PredictionModelsThis paper focuses on proposing novelmeth-
ods to extract features for student performance prediction. These
features are further combined with existing well-established tradi-
tional machine-learning based prediction models to predict student
future performance. Compared with other methods based on deep
neural networks (e.g., deep knowledge tracing [28, 44]), we argue
that predictions based on feature extraction have better explain-
ability, as the features are often intuitive and meaningful.

Data Issues Since there are no other dataset of interactive on-
line question pools publicly available, the whole study is conducted
on the data collected from only one interactive online math ques-
tion pool. But our proposed approach can be easily extended to
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(a) GBDT (b) RF

(c) SVM (d) LR

Figure 7: Predicted distribution heatmap of each score class with four algorithms on dataset ADD. The proportion of True
Positive samples in each score class is in red box. In (a)-(d), the heatmap on the left shows the result of our proposed method
and the right one shows the baseline method. ADD: area dimension question dataset.

other datasets of interactive online question pools, which mainly
involve drag-and-drop interactions. Moreover, the interaction fea-
tures based on student mouse movement trajectories rely on the
size of the interaction records. When there are too few student
interaction records for a specific question, it will be difficult for us
to accurately compare the similarity between a certain question
and others using student interaction features. With more student
interaction data being collected, the reliability of the proposed ap-
proach can be further improved. In addition, our method can be
easily extended to other devices such as tablets with touch screens
since the collected data has the same format (i.e., timestamp, event,
and position).

7 CONCLUSION
Different from the extensively-studied student performance pre-
diction in MOOCs platforms, student performance prediction in
interactive online question pools can bemore challenging due to the
lack of knowledge tags and predefined question order or course cur-
riculum.We proposed a novel method to boost student performance
prediction in interactive online question pools by incorporating
student interaction features and similarity between questions. We
extracted new features based on student mouse movement trajecto-
ries to delineate problem-solving details of students.We also applied
HIN to further consider students’ historical problem-solving infor-
mation on similar questions, as students’ recent performance on
similar questions can also be a good indicator of student future
performance on a certain question. We conducted extensive experi-
ments with the proposed method on the dataset collected from a
real-world interactive online math question pool. Compared with

using only the traditional statistic features (e.g., average scores),
the proposed method achieved a much higher prediction accuracy
across different models in different question classes. The results
further confirm the effectiveness of our method.

In future work, we would like to combine the proposed method
with adaptive question recommendation in interactive online ques-
tion pools, providing different students with personalized online
learning and question practice in online question pools. Also, it
would be interesting to summarize different problem-solving pat-
terns using mouse trajectories to better model and understand
students’ learning behaviors.
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