
AQX: Explaining AirQuality Forecast for Verifying Domain Knowledge using
Feature Importance Visualization

RESHIKA PALANIYAPPAN VELUMANI, The Hong Kong University of Science and Technology, Hong Kong

MENG XIA, Korea Advanced Institute of Science and Technology, South Korea

JUN HUN, Univeristy of Norte Dame, USA

CHAOLI WANG, Univeristy of Norte Dame, USA

ALEXIS LAU, The Hong Kong University of Science and Technology, Hong Kong

HUAMIN QU, The Hong Kong University of Science and Technology, Hong Kong

Fig. 1. AQX contains multiple coordinated views to support exploring, analyzing, and verifying the ML model’s learning with domain
knowledge using feature contribution information along with performance and raw data information. To understand the global
pattern of feature contribution, the Overview (A) displays the feature contribution aggregated and presented as Daywise Overview
(a1), Hourwise Overview (a2), and Locationwise Overview (a3). It also aids in narrowing down to the instance of interest. The
Performance View (B) displays and compares the ML and CMAQ models’ forecast accuracy on monitoring stations in Mean IOA(Index
of Agreement) view (b1) and the spatial patterns captured by the model for the entire Hong Kong region in Spatial Map View (b2) for
the target timestamp and pollutant to understand what the model can and cannot learn. The Raw data View (C) shows the wind
trajectories for the input time period using animation which aids in understanding how wind carries pollutants from one place to
another. The Feature-Temporal Importance view (D) shows the overall contribution of input features for the instance of interest and
this helps in knowing the highly contributing features for the forecast. The Spatio-Temporal View (E) shows the contribution of grid
locations from different timestamps which helps to understand the contribution of features from different spatial locations for the
input time period.
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Air pollution forecast has become critical because of its direct impact on human health and its increased production caused by
rapid industrialization. Machine learning (ML) solutions are being drastically explored in this domain because they can potentially
produce highly accurate results with access to historical data. However, experts in the environmental area are skeptical about adopting
ML solutions in real-world applications and policy making due to their black-box nature. In contrast, despite having low accuracy
sometimes, the existing traditional simulation model (e.g., CMAQ) are widely used and follows well-defined and transparent equations.
Therefore, presenting the knowledge learned by the MLmodel can make it transparent as well as comprehensible. In addition, validating
the ML model’s learning with the existing domain knowledge might aid in addressing their skepticism, building appropriate trust, and
better utilizing ML models. In collaboration with three experts with an average of five years of research experience in the air pollution
domain, we identified that feature (meteorological feature like wind) contribution, towards the final forecast as the major information
to be verified with domain knowledge. In addition, the accuracy of ML models compared with traditional simulation models and raw
wind trajectories are essential for domain experts to validate the feature contribution. Based on the identified information, we designed
and developed AQX, a visual analytics system to help experts validate and verify the ML model’s learning with their domain knowledge.
The system includes multiple coordinated views to present the contributions of input features at different levels of aggregation in both
temporal and spatial dimensions. It also provides a performance comparison of ML and traditional models in terms of accuracy and
spatial map, along with the animation of raw wind trajectories for the input period. We further demonstrated two case studies and
conducted expert interviews with two domain experts to show the effectiveness and usefulness of AQX.
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1 INTRODUCTION

Due to rapid urbanization, environmental pollution, specifically air pollution, has become more serious. It directly
impacts human health and causes severe health complications like chronic respiratory diseases, heart diseases, and
lung cancer [24]. To tackle this issue, modeling, forecasting, and monitoring air quality has become a hot spot among
the scientific community [27]. In particular, with the increased availability of historical data, machine learning (ML)
has gained considerable attention in this critical domain. It can potentially model and forecast complex data like
air quality data accurately, which is dynamic, volatile, and highly variable in space and time [9, 37, 53]. Various ML
techniques [14, 30] have been proposed by machine learning researchers as a solution that can forecast air quality
like traditional statistical methods like CMAQ (Community Multi-scale Air Quality modeling) [5]. Moreover, National
Science Foundation (NSF) has funded 100 million USD to establish AI institutes that can accelerate the research in AI
for ES(Environmental Science) 1.

However, experts in the environmental science domain are skeptical about adopting ML solutions in real-world
applications and policy-making due to their black-box nature. In contrast, the traditional model like CMAQ is currently
widely used in many real-world applications and policy decisions on air quality management 2 as it works transparently
based on clearly defined physical and chemical equations. However, these traditional models are not good at modeling
sudden changes or non-linear behavior, which often results in less accurate forecast results [10]. Therefore, presenting
the knowledge learned by the ML model might make it transparent and comprehensible for the domain experts.
1https://www.ai2es.org/
2https://www.epa.gov/cmaq/cmaq-models-0
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Furthermore, validating the ML model’s learning with the existing domain knowledge might aid in addressing their
skepticism, building appropriate trust, and better utilizing ML models. Concurrently, numerous techniques have been
proposed in the XAI (Explainable AI) field to uncover the black box, which has proven to be successful in illuminating
the workings of machine learning models [1, 6]. However, little work has systematically investigated the prospect of
using XAI for validating domain knowledge and what domain knowledge needs to be validated to gain the appropriate
trust towards the ML models [16, 45].

Domain experts are end-users of ML models or XAI tools with more domain knowledge than common public
but little-to-no technical background. Moreover, predominantly experts in the air pollution domain are end-users of
ML models rather than developers themselves. Unlike common users, whose interest lies in the model results and
performance, domain experts are more interested to understand what the ML model can learn from the data. In addition,
they might be interested in verifying whether it is consistent with their knowledge 3. Therefore, existing XAI tools
explaining the workings of hidden layers of the ML model are neither easy for them to comprehend nor can be used to
corroborate the domain knowledge.

To build a tool that facilitates experts in verifying their domain knowledge, it is essential to identify and distill critical
domain knowledge that needs to be verified by domain experts to establish an appropriate trust in ML models. Therefore,
we conducted a formative study following the design study methodology proposed in [43], with three domain experts
with an average of five years of experience in conducting research pertaining to air pollution and air quality. From the
formative study, we identified that feature (meteorological feature like wind) contribution towards the final forecast as
the major information to be verified with domain knowledge. In addition, the performance of ML model compared with
traditional simulation model and visualizing the raw wind trajectories are essential for domain experts to validate the
feature contribution information.

Based on the findings, we derived seven design requirements to guide the overall design and development of AQX: A
visual analytics system for verifying domain knowledge using feature importance visualization. In particular, AQX
uses multiple coordinated views to present the contributions of input features at the different levels of aggregation in
both temporal and spatial dimensions. In addition, it shows the performance information of both the ML model and
the traditional CMAQ model for comparison. The system also visualises and presents the raw wind trajectories using
animation to facilitate the validation process. The system was then evaluated by two case studies and an expert interview
with two domain experts to demonstrate its effectiveness and usefulness. To summarize, we list our contributions as
follows:

• A list of design requirements for an XAI tool that verifies domain knowledge in air pollution area.
• A visual analytics system for domain experts to explore, understand, and verify their knowledge by showing the
contributions of input features at different levels of aggregation, the model performance, and the raw data.

• A comprehensive evaluation to demonstrate the usefulness and effectiveness of the system by two case studies
and an expert interview.

2 RELATEDWORK

The related work of this paper includes ML Models for Air Pollutant Forecasting, ML Interpretations, Visual Analytics
for XAI and Visual Analytics for Spatio-Temporal (ST) data.

3NSF has established AI Institute for Research on Trustworthy AI in Weather, Climate, and Coastal Oceanography (AI2ES) to develop XAI methods
aligned with perspectives and priorities of environmental science domain. https://www.ai2es.org/research/foundational-research-in-trustworthy-ai-ml/
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2.1 ML Models for Air Pollutant Forecasting

Air pollutant dataset falls under a specific type of Spatio-Temporal (ST) data which can be either represented as tensors
or as spatial maps. Various machine learning models have been proposed to handle these two representatives of air
pollution datasets and make the forecast. Since air pollutant data is often represented as spatial maps we will focus
on related works which use a sequence of spatial maps as input to the ML model and produce a sequential spatial
map as output. Here, the length of the sequences represents the input and output time period. Spatial maps can be
essentially considered as image-like matrices, and thus Convolutional Neural Networks (CNN) has been used for the
forecasting task [25, 28, 59, 60]. Due to the temporal attribute associated with these ST data, various model architectures
consisting of Recurrent Neural Networks (RNN) [7, 8] have also been proposed for the forecasting task. However,
performing forecasts with a sequence of spatial maps involves modeling temporal and spatial correlations, which
requires a combined function of both CNN and RNN. One such approach that combines the convolutional structure of
CNN and Long Short-Term Memory (LSTM) units is the convolutional LSTM network (ConvLSTM) layer [46] which
was initially proposed for precipitation forecasting. The work used a sequence-to-sequence model whose input and
output were both sequential spatial maps, which are ST data. Many variants of ConvLSTM like [54–56] have achieved
impressive results on modeling and forecasting ST data. Few works focused on modeling air pollution data using
ConvLSTM [46]. They used spatial maps generated from air quality and meteorological data collected from monitoring
station as the input to the ConvLSTM model and forecast the future air quality for the study region. In this work,
we adopt the model architecture from [2], it used a sequence-to-sequence model architecture with ConvLSTM as the
building block and further utilized the results of a simulation model to make forecasts for future hours. We modified the
architecture according to our needs and further enhanced the model by feeding it with fine-grained interpolated data.

2.2 ML Interpretation

There are two general categories under which the XAI works fall. One is intrinsic explainability, and the other one
is post-hoc explainability. Simple models like linear/logistic regression [40], decision tree [15], k-nearest neighbors,
etc., are transparent models which are self-explainable while complex models like neural networks require post-hoc
explainability [1, 6]. In this literature review, we mainly focus on post-hoc techniques as our paper tries to explain
neural network learning, which is a complex black-box model. Post-hoc explainability uses various methods like
text explanations, visual explanations, local explanations, explanations by example, explanations by simplification,
and feature relevance explanations techniques to alleviate the interpretability of the complex models [6]. We will
further discuss feature relevance explanations in this section and visual explanations in subsection 2.3, as we adopt the
aforementioned method to present the relational link between input-output.

Feature relevance explanations methods usually assign the input features, an importance score to show the individual
impact of each feature on the final prediction, which help users understand the relationship between features and
predictions. Some recent works which were based on sensitivity analysis methods, like Partial Dependence Plot (PDP)
[18], SHAP[33], are commonly adopted for illustrating how a change in feature value affects the prediction result.
However, one major limitation of sensitivity analysis methods like PDP, SHAP, etc. is that they are computationally
expensive. It becomes infeasible when the dataset has an exceptionally large number of features like ST data [36] with
multiple variables having spatial and temporal dimensions, each of which will be considered as an input feature. A
feasible approach that can be adopted in our scenario is the gradient-based method [29]. Gradient-based methods
provide feature relevance by calculating the first derivative of the output with respect to the input [29]. In this paper,
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we produce our explanation based on gradient-based methods as they are computationally inexpensive, provide more
certain and reliable results, are well supported by most of the ML frameworks, and can be implemented with ease
[12, 35, 38, 42, 44].

2.3 Visual Analytics for XAI

Representing the ML model’s inner workings using visual analytics (VA) is the most inherent way to explain for
non-ML-expert people like domain experts. VA interfaces utilise novel interactions to enable users to interact, which
can help them in exploring, understanding, diagnosing the model and the underlying data as well [26]. There has
been a recent surge in XAI works which makes use of visual analytics for explaining complex ML model’s behavior
[11, 19, 20, 34, 41, 47, 49–52, 57]. These VA interfaces were designed based on requirements for a particular set of
end-users who can be ML experts, domain experts, or common public and evaluated using case studies and qualitative
feedback. This literature review mainly focuses on visual analytics for XAI work on ST data, especially air pollution
datasets. One closely related work [45] tried to explain RNNs in high-dimensional time-series forecasts from two
aspects: model mechanism and feature importance to the domain experts. Another work [48] visualized the influence of
input (space-time and data features) for each prediction using correlation charts. [22] explained the input(Temperature,
wind, and humidity)- output (pollutants concentration) relationship using SHAP values on data collected from the
monitoring stations (sparse ST data). Despite having the forecasting model itself as its main contribution, some works
like ADAIN [14] and GeoMAN [30] interpreted the ML model in terms of local spatial dependency by visualizing the
weights learned by the attention layers using heat maps and scatter plots. However, these XAI works in air quality
focused on explaining the ML models based on what the domain experts do not know about the model. But not many
works investigate the prospect explaining ML model based what the experts already know (i.e.) domain expert’s domain
knowledge, to increase transparency and trust. As a result, in this paper, we design a visual analytics solution that
explains ML model to help domain experts corroborate their domain knowledge.

2.4 Visual Analytics for ST data

One of the distinct attributes of the ST dataset is the data volume, and it might not be easy to process and visualize
these kinds of extensive data without the cost of time. Some works, such as imMens [32], Datavore [17], DICE [23],
speeded up queries by pre-aggregating the data. In addition, they also utilized GPUs to achieve faster query results.
However, data reduction like aggregation can be made effectively only with prior knowledge of the domain field.
Otherwise, some interesting outliers and patterns might remain hidden from the users. A more recent work TPFlow
[31] used a dataset subdivision algorithm to identify subsets with similar trends/patterns along multiple dimensions
for further observation and comparison. Some works which deal with air pollution data in specific [16, 39, 61] used
clustering based on similarity to aggregate and handle the massiveness of the dataset. Previous studies [4] suggested
that ST data especially air pollution concentration, differs based on geographical locations and temporal cycles. Thereby
spatial and temporal dimensions of the data should be considered while performing aggregation or data reduction to
reveal interesting patterns. As such, we present the data at different levels of aggregation in both spatial and temporal
dimensions to perform in-depth analysis.

Current works visualizing multidimensional ST data either uses multi-coordinated visualization or multivariate
visualization, to summarise and display information from temporal and spatial dimensions and different input features
like pollutants, meteorological data. There are works [3, 13] that leveraged the combination of both methods to mitigate
the problem of visual encoding exhaustion. However, visual analytics for ST data require extra considerations for the
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dynamic nature of the data and their features, especially in air pollution domain where meteorological features like
wind which is highly dynamic and moves over space and time dimensions. Considering this aspect of the ST data
features is crucial as it helps domain experts verify their domain knowledge. As such, we propose a novel VA system
that visualize raw wind trajectories and presents it in the form of animation for the validating the existing knowledge
with that of the ML model’s learning.

3 INFORMING THE DESIGN

3.1 Formative Study

The formative study helped us to collect information about the key domain knowledge of different features especially
wind and its contribution to air pollutant’s concentration forecast. We designed the formative study as shown below.

Participants and Procedure: We associated with 3 domain experts (2 Male, 1 Female) from the Environmental
department for conducting the formative study. E1 is a professor in environmental science department with a research
experience of more than 20 years. He predominantly studies numerical modeling of the atmosphere, regional and urban
air pollution. E2 is a researcher with 5 years of experience in research which focuses on applying statistical methods in
deterministic models and data fusion for air pollution forecast. E3 is a phd student conducting research in utilizing
various ML models for air quality forecast. All the domain researchers have interest in utilizing ML models for their
research and as well as in real world applications and therefore would like to understand their behavior. The study
included a semi-structured interview asking the domain experts a series of questions for about 90 minutes. We started
the Q&A session with questions about the evaluation methods in the air quality domain, as this can help us evaluate
the ML model. We advanced with questions about input features to understand input-output relationship. Based on
the answers given we asked follow-up questions to have a better understanding. The questions interchanged with the
domain experts are listed in Tab. 1 and the answers provided by them are listed in appendix subsection A.1. Finally we
drafted the initial design requirements based on the Q&A session. We iteratively collaborated with domain experts for
a period of five months (November 2020 - March 2021) by holding biweekly meetings. Inputs from the experts helped
us to ensure that the results produced by the ML model and feature contribution information generated by the gradient
based method are acceptable as well as the developed visual analytical system meets their requirements.

3.2 Design Requirements

We identified three primary information the domain experts needed for verifying their domain knowledge from the
formative study. The most important information required is (I1) Feature Contribution: Contributions of input
features (air quality and meteorological features) presented at different levels of aggregation can reveal global and
instance level patterns, which can be further verified with domain knowledge. Other essential information that’s
required is (I2) Performance of ML and Simulation models: Performance of the ML model compared with that of
simulation model can provide a holistic understanding of what the ML model can and cannot learn. The last critical
information required is (I3) RawWind data: Raw Wind data is used to validate the input feature contribution (I1).
Since wind helps in carrying pollutants from one place to another, visual presentation of the raw wind trajectories for
the input time period can aid in verifying the contribution of spatial dimension to the final forecast. Based on the three
information described above; we further summarised the following seven design requirements. Design requirements
R1 to R6 are related to the air quality domain, and the requirement R7 is related to UI (user interface) design. The
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Table 1. Questions from the formative study.

Questions Information

Q1: How to evaluate machine learning model?

• Q1(a): How to evaluate spatial consistency and coherence?

Q2:Why CMAQ is widely accepted?

I2: Performance of Ml and simulation models.

Q3:What are the most important features in air quality forecast?

• Q3(a): How does wind affect air pollutant concentration?
• Q3(b): Effect of wind on different pollutants?

Q4: Does air pollutants affect concentration of another air pollutant?

I1: Feature Contribution

Q5: Other useful information about wind??

• Q5(a):What are the influential features other than wind?. I3: Raw Wind data

relationship among the identified information from formative study, derived design requirements,and proposed design
elements for the system are shown in Figure 2.

Fig. 2. The relationship among identified information from formative study, derived design requirements,and proposed design
elements for the system.

R1: Provide an overview of feature contribution at temporal and spatial dimensions: All the experts (E1,
E2, E3) mentioned that the input feature’s contribution, especially wind and its direction on air pollutants differs for
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different seasons. For example, during summer, the contribution of easterly wind to air quality is high, whereas, in
winter, northerly winds have a high contribution. Moreover, wind’s contribution to air quality differs for different
geographical locations. For instance, the wind might have a higher contribution to air quality over places near the
sea than over places in the city center. Therefore, an overview of the input feature’s contribution across different
seasons and its comparison is needed to verify high-level domain knowledge in the temporal dimension. In addition, the
overview of the contribution of features in various geographical locations is also required to verify domain knowledge
in spatial dimensions.

R2: Provide the performance of ML model in terms of IOA and spatial pattern: All the experts (E1, E2, E3)
agreed that showing the performance of the forecast model can give an instant insight about what the model can and
cannot learn from the data. E1 mentioned that "A ML model’s performance on air quality data is usually assessed based

on two factors, one is accuracy which is measured in terms of Index of Agreement (IOA) calculated on monitoring stations,

and the other one is spatial pattern and consistency which can be evaluated by spatial map". Therefore, the system needs
to present the performance information of the ML model in terms of IOA and spatial map.

R3: Compare the performance of ML model, and traditional simulation-based model: E1 mentioned that
CMAQ is a commonly used simulation model in the air pollution domain and should be considered as a baseline for
evaluating the ML model’s performance, especially to assess the spatial consistency and coherence of the ML model’s
forecast. E3 added "CMAQ is a widely accepted traditional simulation model and is currently being used for policy making

regarding air pollution. It cannot be ignored completely, at least CMAQ should be considered as baseline for comparing

and evaluating the ML model’s performance." Therefore, providing the details of the simulation model’s performance in
terms of IOA and spatial map can facilitate the comparison of performances of the ML model and CMAQ model.

R4: Show the correlation of feature contribution of input features for ML model’s forecast (Overall
Feature Contribution): E2 and E3 stated that certain air pollutant features are highly correlated and can influence the
concentration of each other. For example, PM pollutants and O3 are correlated. They can contribute to each other’s
concentration either positively or negatively, but PM and small-scale pollutants like SO2 and NO2 usually do not show
any correlation. E2 mentioned "NO2, SO2 and PM pollutants have no correlation because NO2 and SO2 is highly reactive

and its presence in the air is for a short period of time, thus they have less contribution for PM pollutant’s concentration."

Thus showcasing the input feature contribution for air pollutants forecast can aid in verifying the knowledge about the
correlation between features.

R5: Show the contribution of features along spatial and temporal dimensions: Experts (E1, E2, E3) stated
that each input feature varies across spatial and temporal dimensions, particularly wind, which fluctuates highly in
both dimensions. So, it is vital to show the contribution of input features from spatial and temporal dimensions for the
final forecast. This information can be used to verify the common understanding regarding the contribution of these
dimensions in forecasts. E3 mentioned that "Usually features from the nearest input time periods and spatial locations

have a strong influence over the final forecast for a particular instance."

R6: Provide raw wind trajectory as reference information: E2 highlighted the importance of presenting
raw data, especially raw wind trajectories. Wind helps in carrying pollutants from one place to another and can be
responsible for sudden changes in air quality, so it is essential to show the raw wind trajectory for the input time
period, and this can function as additional information to support the ML model’s learning and validate the feature
contribution information in the spatial dimension.

R7: Provide sufficient interactions to facilitate details on demand: Experts E1, E2, and E3 expressed their
interest in performing case-by-case analysis apart from analyzing global or high-level seasonal and geographical
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patterns. In particular, the experts wanted to understand the role played by spatial and temporal dimensions of the input
features in the final forecast of an instance. E2 also added that he is very much interested in enriching his knowledge
by exploring some exciting instances. So the system needs to support interactions like selection, filter, and tool-tips.

4 FORECAST MODELING

In this section, we describe the application dataset (air quality dataset), the model architecture we use for the forecast,
and the method we used for data interpolation.

4.1 Application Domain and Dataset

In this paper, we focus on explaining ML model behavior on air pollution forecast. We mainly focus on five pollutants
that drastically affect human health, namely PM10, PM25, O3, SO2, and NO2. The study area for this paper is Hong Kong.
There are 16 air quality and 28 meteorological monitoring stations installed across Hong Kong to collect air quality and
meteorological data respectively on an hourly basis. We use both air quality and meteorological data collected over one
year from 1st January 2018 to 31st December 2018 for training and evaluating the ML model. Each input feature has
both spatial and temporal dimensions (i.e., its values change over space and time). The features of the data are listed in
Tab. 2.

Table 2. Features taken as input: air pollutant and meteorology.

Category #Monitoring Stations Feature Type Units

Air Pollutant Data 16

PM2.5 µg/m3
PM10 µg/m3
O3 ppb
SO2 ppb
NO2 ppb

Meteorological Data 28
Wind speed Meter/Second

Wind direction Degree
Temperature Celsius

4.2 Data Processing

The domain experts aim to forecast air quality for the entire Hong Kong region with the data collected from the
monitoring stations. Therefore, we divided the study area into 64 × 41 grids with a resolution of 1km. We then
interpolated the data for locations without monitoring stations using a well-established technique called the Gradient
Vector Flow (GVF) [58]. GVF, which is a two-stage diffusion approach, is leveraged to obtain the velocity and values
of air pollutants at all locations from the sparsely sampled data. In the first stage, it estimates the velocities and air
pollutants at these pixels, which are closest to the ground-truth grid cells (i.e.) grid cells with monitoring stations,
through a weighted linear interpolation. Then, the interpolated values are iteratively diffused to the whole region by
minimizing the Laplacian. Similarly, data were interpolated for all timestamps from January 2018 to 31st December
2018 and for all the input features (PM10, PM25, O3, SO2, NO2, Wind).

For generating and visualizing the trajectories of wind from the raw data, we used Euler’s method [21], a numerical
method for tracing particle’s flow in a two-dimensional vector field. It is a two-step process; first, the user needs to select
a constant named "Step-size", and second, based on the selected constant, the algorithm calculates the next position of
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the particle (wind) along the direction of the vector using bilinear interpolation method. These two steps are repeated
until the wind position reaches the extent of the study area. These extracted points can be further used to visualize
wind trajectories for the given time period.

4.3 Model Architecture

This section describes the components, input and output of the ML model we built, while the proposed visual analytics
solution can support any differentiable ML model (i.e.) models with functions for which derivatives can be computed.
The ML model we built follows an encoder-decoder structure with ConvLSTM as the building block, inspired from the
model architecture of [2], to forecast the pollutant’s concentration. The model architecture shown in Figure 3 consists of

Fig. 3. ConvLSTM model architecture.

two parts: encoder and decoder. Both encoder and decoder have the same architecture, which comprises two ConvLSTM
blocks with 64 and 32 feature maps, respectively, and 3× 3 convolutional kernel, each followed by a batch normalization
layer. The input for the ML model is past 12 hour interpolated data (spatial map) and the output is forecasted future 12
hour data (spatial map). We use the data collected from the monitoring station, issued by the Hong Kong Observatory
which are publicly available, as ground truth to evaluate the model. Each data point given as an input for the encoder is
a 4D tensor with the dimension of

(
𝑁𝑖𝑛, 𝑁𝑥 , 𝑁𝑦, 𝑁𝑝𝑜𝑙+𝑚𝑒𝑡𝑒

)
, where 𝑁𝑖𝑛 is the number of timestamps of input historical

air quality data (in our case, 𝑁𝑖𝑛 = 12), (𝑁𝑥 , 𝑁𝑦) is the grid location, 𝑁𝑝𝑜𝑙 is the number of pollutants, and 𝑁𝑚𝑒𝑡𝑒 is the
number of meteorological features. The encoder outputs a state which encodes the historical data in the dimension
of

(
𝑁𝑥 , 𝑁𝑦, 𝑁ℎ𝑒𝑛𝑐

)
, where 𝑁ℎ𝑒𝑛𝑐 is the number of feature maps generated in the last ConvLSTM in the encoder. Then

the decoder takes this as input and outputs a 4D tensor of dimension
(
𝑁𝑜𝑢𝑡 , 𝑁𝑥 , 𝑁𝑦, 𝑁ℎ𝑑𝑒𝑐

)
, where 𝑁𝑜𝑢𝑡 is the number

of future timestamps we want to forecast (in our case, it is 12 hours in future), and 𝑁ℎ𝑑𝑒𝑐 is the number feature maps
produced in the last ConvLSTM in the decoder. The decoder is then followed by a 2D convolutional layer with 1 × 1
kernel size and ReLU activation function and outputs 4D tensor of dimension

(
𝑁𝑜𝑢𝑡 , 𝑁𝑥 , 𝑁𝑦, 𝑁𝑝𝑜𝑢𝑡

)
, where 𝑁𝑝𝑜𝑢𝑡 is the

number of pollutant to forecast (in our case 𝑁𝑝𝑜𝑢𝑡 = 1). The model is optimized using mean squared error and Adam
optimizer with a learning rate of 0.001. The model was evaluated on observed data from March, June, September and
December of the year 2018 and trained on the remaining eight-month data for 100 epochs with a batch size of 16.
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4.4 Extracting feature importance

Our model interpretation method is mainly based on first-derivative saliency [29]. We calculate the saliency score for
individual units and aggregate across spatial locations or the specific timestamp to derive the spatial feature contribution
or temporal feature contribution. Below we discuss the implementation details of the model interpretation method.

4.5 First-Derivative Saliency

Generally, the input is denoted as 𝐼 , and the output of an ML model𝑀 is denoted as𝑀 (𝐼 ). According to the first-order
Taylor expansion, we can approximate the model’s output with a linear function of the input

𝑀 (𝐼 ) ≈ 𝑤 (𝐼 )𝑇 𝐼 + 𝑏. (1)

where w and b are the weights and bias, respectively. Since we are using the first-order Taylor expansion, the value of
𝑤 (𝐼 ) is the first-order derivative with respect to the model’s output

𝑤 (𝐼 ) = 𝜕 (𝑀)
𝜕𝐼

����
𝐼

. (2)

Such derivatives can measure how sensitive the input unit is to the final forecast results [29]. We can use the derivative’s
absolute value to indicate the importance of this input unit to the final forecast, which is the saliency score 𝑆 (𝐼 )

𝑆 (𝐼 ) = |𝑤 (𝐼 ) |. (3)

4.6 Spatial and Temporal Feature Importance

Based on the definition of first-derivative saliency, we further define the spatial and temporal feature contribution as
follows.

In our case, let’s denote the input data as 𝐼 = {𝐼1, 𝐼2, , ..., 𝐼𝑡𝑖𝑛 } where 𝑡𝑖𝑛 denotes the input time period. For a given
timestamp, the forecast is a 2D tensor with a dimension of𝑊 ∗ 𝐻 , where𝑊 and 𝐻 denote the width and height of the
2D tensor, respectively.

Considering 𝑀(𝑡𝑜𝑢𝑡 ,𝑥,𝑦) (𝐼𝑡𝑖𝑛 ) as the output of the model, (i.e., forecast instance, at a timestamp 𝑡𝑜𝑢𝑡 on a location

(𝑥,𝑦) in the 2D tensor), we can calculate the saliency score 𝑆 (𝑥,𝑦)𝑡 (𝐼𝑡𝑖𝑛 ) using first-derivative saliency which is also
considered as the spatial feature contribution

𝑆
(𝑥,𝑦)
𝑡 (𝐼 ) =

�������
𝜕

(
𝑀(𝑡𝑜𝑢𝑡 ,𝑥,𝑦)

)
𝜕𝐼𝑡𝑖𝑛

�������
𝐼

. (4)

For temporal feature contribution calculation at a specific timestamp 𝑡 , we simply consider the sum of the saliency
score for all (𝑥,𝑦) locations at this timestamp as the temporal feature importance 𝑆𝑡 (𝐼 )

𝑆𝑡 (𝐼 ) =
∑︁

1≤𝑥≤𝑊,1≤𝑦≤𝐻
𝑆
(𝑥,𝑦)
𝑡 (𝐼 ) . (5)

5 AQX

In this section, we introduce AQX, a visual analytic system that explains air quality forecast for verifying domain
knowledge.
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Fig. 4. AQX includes the preprocessing, analysis, visualization, and interaction modules.

5.1 System Overview

AQX comprises of four modules, namely: (1) Preprocessing; (2) Analysis; (3) Visualization; and (4) Interaction as shown
in Figure 4. The preprocessing module interpolates the air pollutant and meteorological data for the entire Hong Kong
region from the data collected at the monitoring station. The analysis module incorporates two main parts: the ML
model part (ConvLSTM architecture) for forecasting the air pollutant, and the feature contribution extraction part
calculated using the first derivative gradient method. The visualization module visualizes the feature contribution at
various levels of aggregation and as well as includes visualization of performance information of the models and raw
wind trajectories. In addition, the interaction module supports exploratory analysis with rich interactions.

The visualization module consists of five main views: (1) Overview displays the overall feature contribution at
Temporal (Days and Hours) and Spatial dimensions; (2) Performance View shows the performance of ML model and
traditional simulation model in terms of IOA (index of Agreement) values calculated at monitoring stations and Spatial
Maps showing the spatial pattern and consistency of the forecast; (3) Raw data View presents an animation of wind
trajectories, (i.e., wind movement along with speed and direction, for the input time period) (4) Feature Contribution
View shows the instance level overall input feature’s contribution in temporal dimension; and finally (5) Spatio-Temporal

Contribution View displays the instance level input feature’s contribution at both spatial and temporal dimensions.

5.2 Overview

Overview (Figure 1(A)) displays the overall feature contribution at different temporal and spatial resolutions. The
feature contribution information is aggregated and presented as Daywise (Figure 1(a1)), Hourwise (Figure 1(a2)), and
Locationwise (Figure 1(a3)) feature contributions. The Overview has filters to select the target pollutant and feature to
analyse which are the inputs to the visualization system. The system uses different colors to encode the input features
(NO2, PM25, O3, SO2, PM10, Wind-North, Wind-South, Wind-East, Wind-West) and use gradient of the respective colors
to denote the feature contribution value. For example, a darker color gradient represents a higher feature contribution
value and a lighter color gradient denotes a lower feature contribution value.

Daywise Overview (Figure 1(a1)) part uses bar chart to present the contribution of the selected feature for every
day in a year. The view aids the domain experts in understanding the contribution of different features for the forecast
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of target air pollutant on different days over the year. Here the x-axis denotes days of the year, and the y-axis denotes
feature contribution value. The users can interact with the bars by clicking on them to select a day of interest to explore
further. A tooltip appears with the date and feature contribution information as the user hovers over the bars.

Hourwise Overview (Figure 1(a2)) This view helps the domain experts in understanding the contribution of the
selected feature for the forecast of target pollutant throughout the day (for 24 hours), using a circular barplot, after the
user selects a date of interest from the Daywise Overview chart. This chart provides interaction to select a particular
hour of interest by clicking on the bar. A tooltip appears on hovering over these bars, showing the feature contribution
information. The bar’s color denotes the selected feature, and the gradient of the color represents the feature contribution
value. For example, a darker gradient represents a higher feature contribution value, while a lighter gradient denotes a
lower value. Barchart was considered as an alternate design for this view. However, utilizing a bar chart to present the
feature contribution for 24 hour will be difficult due to space constraints. Moreover, a circular barplot resembles a clock.
Hence, we chose the circular bar plot for this view.

Locationwise Overview (Figure 1(a3)) presents the contribution of the selected features in different spatial locations
for the selected date and hour using a heatmap overlaid on top of the Hong Kong map. Based on the suggestions
from domain experts, we selected grid cells having monitoring stations as representative locations to calculate feature
contribution as they have the ground truth data to evaluate the ML model. The color of the heatmap denotes the selected
feature, and the gradient of the color denotes the value of feature contribution. The users can select a particular location
of interest by clicking on any grid cells on the heatmap.

5.3 Performance View

Performance View (Figure 1(B)) aims to show the performance of the ML model for the selected pollutant and timestamp
and further facilitate comparing it with the traditional simulation (baseline) model. The model’s performances are
presented in terms of IOA (Index of Agreement) values, which measures the accuracy of forecast on the monitoring
stations, and Spatial map, which showcases the model’s ability to capture spatial patterns. Themean IOA line chart
(Figure 1(b1)) presents the IOA values of ML and simulation models, averaged over all sixteen monitoring stations, for
the forecast time period. The x-axis represents the forecast period, and the y-axis represents the mean IOA values. The
lines are encoded as solid and dashed to represent the ML and simulation models. A tooltip appears on hovering over
the lines, displaying the ML and simulation model’s mean IOA value for the corresponding future hour. The spatial
map (Figure 1(b2)) shows the pollutant concentration forecasted by ML and simulation model using two heat maps
overlaid on top of Hong Kong geographical map, respectively. The heatmap helps to understand the spatial pattern of
the forecasted pollutant. The color gradient denotes the concentration of the pollutant. For example, a darker gradient
represents a higher concentration, and a lighter gradient represents a lower concentration. Tooltip appears on hovering
over the heatmaps to display information like the grid number and pollutant concentration of the corresponding grid.
This view also incorporates a legend on top, which helps the users understand the visual encodings.

5.4 Raw data View

Raw data View (Figure 1(C)) visualizes the animation of wind trajectories for the input time period. This view can be
seen when the user clicks on the Spatial Map button present in the Performance View. This view has two heatmaps
overlaid on top of the Hong Kong map, placed side-by-side. The left one shows the ML model’s forecast for the selected
pollutant and timestamp. The right one shows the movement of wind trajectories overlaid on the top of heatmap of
the target pollutant for the input period from input hour 12 to input hour 1 using animation. The wind trajectories
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are represented using blue lines with arrow marks at the end, which indicate wind directions, and the lengths of
the lines denote the wind speed. We used the pathline tracing method [21], which is a type of flow visual, to extract
the trajectories from the wind vector data as it helps in making invisible flow patterns of wind visible. We adopted
animation over static visualization since wind is a highly dynamic feature and moves in space and time simultaneously.
Visualizing wind trajectories overlaid on top of pollutant concentration heatmap using animation can help in better
understanding of how wind moves pollutants from one place to another.

5.5 Feature Contribution View

Feature Contribution View (Figure 1(D)) visualizes the overall contribution values of the input features aggregated across
all spatial locations for the input time period for the selected instance using a bar chart. After domain experts select
an instance of interest in the Overview, they can use the Feature Contribution View to understand what are the highly
contributing features for this instance’s forecast. The color and x-axis of the bar chart represent different input features,
as seen in the Overview. The y-axis denotes the Feature contribution value.

5.6 Spatio-Temporal Contribution View

Spatio-Temporal Contribution View (Figure 1(E)) aims to provide the contribution of features in spatial and temporal
dimension. This view helps to understand the contribution of features from different spatial locations of the input
time period towards the forecast for the selected instance. This view uses 12 heatmaps overlaid on top of the Hong
Kong maps showing the feature importance with a color gradient for the past 12 input hours. The color of the grid
cells represents the selected feature, and the gradient represents the feature contribution of the spatial location. For
example, a darker gradient denotes a higher feature contribution, while a lighter gradient denotes a lower contribution.
The heatmaps in the Spatio-Temporal View zoom to the target grid location, highlighted via a red cross, to reveal
fine-grained spatial contribution information. On hovering over the grid cells, a tooltip appears showing information
about grid index and feature contribution value of the grid. Since usually, grid locations from near past hours have
higher contribution values than the later past hours, we show the past hour 1, 2, 3, 4, and 5 in the main view, and further
scrolling down the Spatio-Temporal View reveals the heatmaps of later timestamps from past hour 6 to past hour 12.

6 EVALUATION

In this section, we demonstrate two case studies and expert interview with two domain experts to show the effectiveness
and usefulness of AQX in verifying domain knowledge.

6.1 Case Studies

This section describes the case studies observed by two domain experts (E1, E2). Both E1 and E2 participated in the
formative study and were involved in the iterative design process, and hence they are familiar with the system. E1
used the system to verify whether the ML model’s learning (feature contribution information) is consistent with their
domain knowledge. And E2 used the system to analyze and understand the behavior of the ML model during extreme
weather conditions and enrich his knowledge.

Case1: Verifying the domain knowledge Firstly, we, along with E1, summarised and categorized the following
key domain knowledge that needs to be verified based on the information collected during the formative study.
D1: Wind.

14



AQX: Explaining Air Quality Forecast for Verifying Domain Knowledge Woodstock ’18, June 03–05, 2018, Woodstock, NY

• D1(a): Easterly winds have high contribution on air quality during the summer months.
• D1(b): Wind has high contribution on air quality in places near sea or open area and less contribution in places
near city center.

D2: Pollutants.

• D2(a): Among PM pollutants (PM10, PM2.5) and O3, strong correlations can be observed (i.e.) the PM pollutants
and O3 can contribute to each other’s concentration.

D3: Spatial and Temporal dimension.

• D3(a): The concentration of pollutants at a particular time and place exhibits spatial and temporal dependencies
(i.e.) features from the nearest previous timestamps and the nearest locations have a higher contribution towards
the concentration of pollutants at the current location and timestamp.

E1 started the verification process with the Overview (Figure 1(A)); he selected O3 as the target pollutant using the
drop-down menu (Target Pollutant) in the Overview as shown in Figure 1(A). E1 chose O3 since it is a highly toxic
pollutant when present at ground level and is often analyzed with much importance4. E1 then analyzed the contribution
of each features one by one in the Daywise Overview Figure 1(a1) of Overview part Figure 1(A) (R1). He noticed that
Wind-East has a relatively higher feature contribution during May which is a summer month in Hong Kong. This
observation verifies the domain knowledge about wind during summer (D1(a)). While further analyzing, E1 noticed
from the Daywise Overview that during a particular day in May (2018-05-11), the feature contribution of Wind-East was
high as shown in Figure 1(a1). He selected the day of interest from the Bar chart in Daywise Overview to explore its
feature contribution in Hourwise Overview ((R7)) Guided by the visual cue (color and height of the circular bar plot),
E1 further narrowed down to a particular hour (05:00:00) which had a darker color gradient and higher bar height, as
highlighted in Figure 1(a2). He later found that the wind speed at 2018-05-11 05:00:00 HKT was 40-50 km/hr, which is a
strong wind, and the Hong Kong observatory issued Typhoon signal-3 warning for the selected timestamp (2018-05-11
05:00:00 HKT). From the Locationwise Overview as seen in Figure 1(a3), E1 observed that the color gradient of Wind-East
feature has a relatively darker shade on open areas indicating higher contribution than in the city center (R1). This
verifies the second domain knowledge about wind as in D1(b). Before analyzing the instance-level information, E1
went to the Performance View (Figure 1(B)) to check and compare the performance of the ML model and CMAQ model
(R2, R3) for the selected timestamp (2018-05-11 05:00:00 HKT). From the Mean IOA view as shown in Figure 1(b1), E1
saw that the IOA values calculated at the monitoring stations for the results generated by the ML model are higher than
that of the CMAQ model. E1 understood that the ML model performs better in forecasting at the monitoring stations
than CMAQ model. Having known the performance of the models on monitoring stations, E1 analyzed the capability of
the models in capturing the spatial pattern in the Spatial Map view as seen in Figure 1(b2). He understood that the
CMAQ model and ML model have different results in terms of spatial patterns as shown in Figure 1(b2). This is because
of the difference in input given to these models. CMAQ (traditional simulation model) takes input like geographical
features, elevation data, traffic data, etc. on the other hand ML model takes only the data from the monitoring stations
as the input. Further, based on his domain knowledge about O3, E1 mentioned that the CMAQ model’s spatial map is
more acceptable than the ML model’s as O3 is a small scale pollutant and its concentration has abrupt spatial changes,
which can be observed from the changes in color intensities of the spatial map as seen in 1(b2) CMAQ spatial map.
In conclusion, from the Performance View, E1 was able to get a high-level understanding of what the ML model can
and cannot learn from the ST (i.e.) air quality data. Upon selecting a location near the sea in the Hong Kong map from
4https://www.epa.gov/ground-level-ozone-pollution
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Locationwise Overview 1(a3), E1 analyzed the instance-level contribution information. From the Feature Contribution
View E1 observed that Wind-East has a higher contribution for the selected instance (Timestamp and grid location).
He also noticed that apart from O3 pollutant, PM pollutants (PM10, PM25) had relatively high contribution for O3
forecast as seen in Figure 1(D) (R4). This observation verifies the domain knowledge about the correlation that exists
among pollutants (D2(a)). E1 moved to the Spatio-Temporal Contribution View (Figure 1(E)) to observe how features
from spatial and temporal dimensions contribute to the final forecast for the selected instance (R5). From the Figure
1(E), he observed that features from near input past hours like Past Hours 1, 2, 3 have high feature contribution value as
noted from the higher color gradient of neighboring grid cells surrounding the target grid cell indicated by the red cross
sign. This observation validates the domain knowledge about the spatial and temporal attributes of the features (D3(a)).
Finally, E1 used Raw Data View (Figure 1(C)) to check the raw wind trajectories for the input time period (2018-05-11
05:00:00 HKT) (R6). After viewing the animation, E1 noted that the wind was blowing from the east direction for the
input time period. He also further noticed from Spatio-Temporal Contribution View as seen in 1(D) that the contribution
of features from grid cells located in east direction has darker color gradient indicating high feature contribution which
is aligned with the wind trajectory. E1 stated that the above observation made the feature contribution information
shown in other views are more reasonable and acceptable. Through this case study E1 used AQX to verify some key
domain knowledge.

Fig. 5. ML model’s learning during extreme weather conditions. Daywise (a1), Hourwise (a2), and Locationwise (a3) feature con-
tributions of the selected pollutant. Performance View showing Mean_IOA (b1) and Spatial Map (b2) of ML and simulation model.
Raw data View (c) showing wind trajectories. Feature Contribution View (d) showing the overall feature importance of the selected
instance, and Spatio-Temporal Contribution View (e) showing the grid level contribution.

Case 2: Exploring the ML behavior during extreme weather conditions E2 was very interested in analyzing
and understanding how the ML model learns from the data and makes forecasts during extreme weather conditions
since the simulation model’s forecasts are not-so-good during this period. In 2018, Hong Kong encountered a super
typhoon from 15th September 2018 to 17th September 2018 and E2 wanted to analyze timestamp from this particular
time period. E2 selected O3 as the target pollutant from the drop-down menu in the Overview (Figure 5(A)) to analyse
and understand further.
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E2 started analyzing the contribution of features for O3 forecast one-by-one using the filter in the Daywise Overview
(Figure 5(a1)) (R1) for September month for the target pollutant. He found that Wind-East had a higher contribution
than other features especially wind from other directions during September. Particularly on 12-16 September 2018,
during which hurricane struck Hong Kong. Since the HK government issued a warning signal 10 (Highest warning
signal) on 16th September 2018, E2 selected the corresponding bar to explore further (R7). In the Hourwise Overview
chart based on darker shade and the height of the bar as shown in Figure 5(a2), E2 picked second hour of the day as a
point of interest as Wind-East has high contribution value at this particular hour. During this particular hour of the
day, the wind speed was 144km/hr. E2 then wanted to analyze the performance of the ML and CMAQ model (R2, R3)
during this extreme weather condition by checking the IOA chart as shown in Figure 5(b2). He noted that IOA values
on monitoring stations for CMAQ was low and ML model was high. E2 stated that he expected the CMAQ to have low
performance but was surprised to note the performance of the ML model. E2 checked the Spatial map (Figure 5(b2))
, to analyze the performance of the models in terms of capturing spatial patterns. From observing Figure 5(b2), E2
mentioned that CMAQ model’s forecast has acceptable spatial patterns than the ML model as CMAQ’s spatial map has
rapid changes in color gradients in the grid cells which correlates with behaviour of O3 pollutant. After examining
the Performance view (Figure 5(B)), E2 selected a location in the center of the city from the Locationwise Overview
(Figure 5(a3)) to understand its instance-level feature contribution. From the Feature Contribution view Figure 5(d) ,
E2 noticed that the wind from the east has high importance. Further observing the spatiotemporal importance of the
input features in Figure 5(E), E2 noticed that grid locations from past hours 1 and 2 has relatively high importance
than the later past hours (R5). The above observation indicates that sudden changes in wind speed and directions has
happened during these nearby timestamps. So, E2 moved to the Raw data View (Figure 5) to check the wind trajectory
animation and validate the contribution information shown (R6). E2 observed that wind indeed moved from the east to
the west for the input time period during which its direction changes rapidly, as seen in Figure 5(C). Through this case,
E2 understood how the ML model behaves during extreme weather and the information captured by it. E2 concluded
that the ML model was able to capture the sudden change of the pollutant in extreme weather conditions better than
the CMAQ model. He also said that while in the spatial dimension, CMAQ maintained a better spatial consistency.

6.2 Expert Interview

For the expert interview, we invited two (E4, E5) domain experts, who were not involved in the formative study and
case studies, to evaluate the system based on its usability and effectiveness. E4 is a researcher who predominantly
works on modeling regional or local air quality and is interested in understanding the ML model’s behavior on air
pollutant datasets, and E5 is also a researcher interested in XAI for environmental science.

Procedure. The interview was a semi-structured one conducted with experts separately, each of which lasted for 50
minutes. We first introduced the objective of the research, the data we used, and our visualization system (AQX). After
this, we presented the case study found by E1 and E2. Followed by this, we invited the experts to explore and analyze
the functionalities of the system. Finally, we collected their feedback regarding the visual designs, interactions, and the
overall usability of the system. We summed up our observations and the experts’ feedback as follows.

System Usefulness Both the experts mentioned that AQX is a useful system for verifying domain knowledge. The
experts commented that the Overview helps them see the overall pattern and narrow the analysis to the point of interest.
They further stated that separating the feature contribution and aggregating it in different levels of temporal and
spatial resolution is intuitive. Furthermore, it aids in verifying domain knowledge that can be observed in temporal and
spatial dimensions separately. However, they also mentioned that the system must include interactions to facilitate the
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comparison of different features’ contributions in Daywise Overview. E4 also mentioned that “It is difficult to remember

so much information when comparing with the contribution information in other month.” expressing their difficulty in
remembering when comparing contribution information of all months in Daywise Overview. The experts commented
that the Performance View gives them a high-level understanding of what the model can and cannot learn. This view
helped them quickly understand that even though the ML model’s forecast accuracy is better than the simulation model
on the monitoring stations, and it fails to capture the pollutant’s spatial patterns that the simulation model can achieve.
Both the experts stated that the Feature Contribution View is intuitive and easy to understand. E3 stated that “The bar
chart showing the importance of various features is easy to understand and is indeed a useful information to visualize.”

For the Spatio-Temporal Contribution view, E4 stated that it is interesting to know how the spatial importance changes
over the input time period and how the grid locations in the direction of wind have high importance value as shown in
the case study. E5 added that this view helps her understand how the ML model uses the spatial attribute of the input
feature. In terms of Raw data View, both experts commented that visualizing wind trajectory to verify the other view’s
information is intuitive. E4 stated that “Air pollution forecast is a complex mechanism. It depends on multiple features like

physical, chemical and geographical. However, the wind is regarded as an important feature though we might not have

statistical data to support because of the changes in climatic condition. So visualizing wind trajectory to support the feature

importance information is cool and intuitive.”

Visual Designs and Interactions.We also collected feedback regarding various visuals used in the system. Both
experts felt that system navigation is easy to understand and follow. They also mentioned that the visualizations were
elegant and self-explanatory. E5 said, “the Feature Contribution view is very useful and easy to understand which feature

is more important for the forecast.” The experts complimented the interactions supported by the system. E4 appreciated
the zoomed display of the target grid location in the spatial importance view upon selecting the target grid location in
the spatial map view. He further added that “The zoom option helps me to gain a clear picture of spatial contribution

information.”. However, E5 suggested that the system should incorporate some visual cues to indicate the available
interactions. She stated that “For the Spatial-Temporal importance view shows the spatial importance for past 12-hours, the

system should indicate that the view is scroll-able to reveal the spatial importance at later time stamps.”

7 DISCUSSION

In this section, we discussed the social impact of our research, the limitations of the designs, and the possible future
work for the study.

7.1 Social impact of the research

In this paper, we propose a visual analytics system to aid domain experts in verifying the ML model’s learning with
their domain knowledge. Air pollution is critical domain. And forecasting, analysing and monitoring air quality is
essential for policy making to maintain a healthy environment. If ML models can produce highly accurate forecasts,
then verifying and validating domain knowledge can aid in establishing appropriate trust in ML solutions or approaches.
Moreover, this can further increase the possibility of adopting ML solutions to air pollution and other domains instead
of adopting it without understanding or completely ignoring it because of its black-box nature.
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7.2 Limitations and future work

Scalability Some of the views like the Feature Contribution view might suffer from scalability issues when the number
of input features increases. For example, in the Feature Contribution View, it might not be easy to visually differentiate
features using color when the number of features increases to more than nine.

Visual Cognitive Load The system currently supports the exploration of the contribution of features one at a time.
However, the domain experts in the expert interview expressed that having interactions to facilitate the comparison of
the contribution of multiple features in the Overview might be helpful. This design requirement can be added to R1 to
enhance its usability in future work. The experts also mentioned that they have to retain a lot of information in the
memory to compare the contribution of a feature across different months in the Daywise Overview. This increases the
cognitive load in the users.

Limited number of subjects The limited number of domain experts is due to the availability of experts in air quality
field within our university. However, the experts in the formative study and final evaluation were deeply involved
throughout the process. The feedback and design requirements derived from the formative study can hold valid despite
the number of subjects involved in the study, while including more subjects might help in fine-tuning the design
requirements.

Scope of the paper The scope of the study is to develop a visual analytics XAI tool for experts to verify their
knowledge. However, the study can be further extended to understand whether domain knowledge verification alleviates
the trust in the ML model and whether it persuades the domain experts to use it in their application domain through a
large-scale qualitative study. Furthermore, the design requirements and VA system can also be extended to develop a
tool for debugging and improving the performance of the ML model, where distilling domain-specific knowledge to the
ML model can improve its performance.

GeneralizabilityWe discuss the generalizability of the design requirements and the system based on its applicability
to other stakeholders as well as other domains. Other Stakeholders: Our study considers domain experts with little-to-
no technical background as the target users. Political leaders from the environmental bureau with domain knowledge
can use the system to understand the ML model’s behavior and decide whether to use ML models for policy-making.
Domain experts with ML knowledge (Model developers) can utilize the design requirements and the visualization
system with modifications to understand the ML model’s ability to learn key domain knowledge and further steer and
improve the model. Medical professional can also utilize the visual system to understand the behavior of ML models and
better use these models to anticipate and manage the health risks related to poor air quality. Other Scenarios: AQX
can be generalized to domains other than air quality domain. Precipitation-nowcasting forecasts future rainfall over a
study area with data collected from monitoring stations at regular intervals. This domain uses meteorological data
like wind and satellite images to perform the forecast. In particular, wind plays a vital role in precipitation nowcasting.
Therefore, with some minor changes in the view, AQX can be adopted for precipitation nowcasting. Furthermore, a few
design requirements and views of AQX can be used in the aerodynamics domain, where prediction of pressure field
around the aircraft helps to isolate and localize the source of air acoustics. When an aircraft lands and takes off from a
runway, its interaction with the wind changes the pressure around the aircraft and produces noise. The domain experts
have critical knowledge about the changes in pressure field depending on wind speed and its direction, which can be
analyzed and verified using Raw data view, and Spatio-temporal Contribution view. In addition, AQX is model agnostic
and can support feature contribution explanation for any differentiable ML model.
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8 CONCLUSION

In this paper, we formulated the need to explain the ML model’s learning to domain experts and verify it with their
knowledge. We conducted a formative study and identified that feature contributions towards the final air pollution
forecast, along with the prediction accuracy and raw data information, are essential for the domain experts to verify
their knowledge. We introduced AQX, a visual analytics system designed to help experts validate and verify the ML
model’s learning with their domain knowledge. We presented two case studies and expert interviews to demonstrate
the effectiveness and usefulness of the proposed system. The feedback from the experts states that AQX has helped
verify and validate their knowledge. As a future work, we want to conduct more longitude studies on improving the
tool to build domain experts’ appropriate trust in ML models and the awareness of the risk.
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A FORMATIVE STUDY:

A.1 Question and Answers

Q1: How to evaluate machine learning model?

• Usually for ST forecasts, especially air quality forecast accuracy is evaluated based on the performance of the
model at the monitoring stations, which is measured in terms of IOA (Index of Agreement). And the spatial
pattern of the model’s forecast, which can be evaluated from the spatial consistency and coherence of the spatial
map.

• In terms of IOA, a model with an error of 15 percent or accuracy of above 80 percent is acceptable.

Q1(a): How to evaluate spatial consistency and coherence?

• Spatial coherence/consistency can only be evaluated using domain knowledge as it is location and feature
dependent. E.g., Temperature is a large-scale feature, and it has the same value for a large geographical extent.
In contrast, air pollutants are small-scale features, and they can have different values in two different streets
located in the same area.
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• There are no quantitative metrics to evaluate Spatial coherence and consistency. It can be evaluated with the
help of domain experts by visualizing the spatial map of the model’s forecast. They can help to verify if it is
acceptable or not.

• But if there is a need for a baseline for comparison, the spatial map of the CMAQ model’s forecast can be used. If
the spatial map of the ML model’s forecast is similar to the spatial map CMAQ model’s forecast, then it can be
accepted.

Q2:Why CMAQ is widely accepted?

• Usually, a model is widely accepted depending on the scenario in which the model is being used. There are two
traditional ways to forecast meteorological features like temperature. One way: Give the average of measured
recordings from previous years at a particular timestamp as the forecast for the same timestamp next year.
Second, give the previous hour or previous minute recorded measurement as the forecast for future timestamp
(persistent forecast). These two methods can be used alternatively depending on the scenario and the feature we
want to forecast. However, CMAQ has better performance than these two methods for all features, which is why
it is widely accepted.

Q3: What are the most important features in air quality forecast?

• Air pollutant’s concentration depends on multiple factors like emission source, emission duration, meteorological
condition, location of the monitoring stations, season, time period of the day, geographical boundaries, etc.

• All the factors/ features are equally important. If we have to point out the most important or influential feature,
it should be wind.

• Wind is a critical and highly regarded feature. Even though we do not have statistically significant data to prove
this claim given the variations in seasons and climatic conditions, it is a commonly accepted fact that wind is
important in scattering the pollutants and thereby affects the forecasts.

Q3(a): How does wind affect air pollutant concentration?

• Wind’s influence over air pollutants varies between different seasons and geographical locations.
• In the summer months of May to September, the air quality is affected by wind from the East as it is the prevailing
wind direction during the summer season.

• In the winter months of November to February, the air quality is largely affected by wind from the North as it is
the prevailing wind direction during the winter season. These are some high-level seasonal patterns that can be
observed.

• In terms of high-level spatial pattern, the wind has a higher impact on air quality in open areas (i.e.) places near
the sea than the city center.

Q3(b):Does air pollutants affect concentration of another air pollutant?

• PM10 and PM2.5 are positively correlated with each other. PM pollutants and O3 are sometimes negatively
correlated and sometimes positively correlated. So, PM and O3 pollutants can influence each other’s concentration
in a given location and time.

• But PM pollutants are less similar to NO2 and SO2. So, correlation of any kind cannot be observed amongst these
pollutants.

• It is because PM10 and PM2.5 are large scales, long term features, and NO2, SO2 are local or small-scale features
because of their highly reactive nature.
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• NO2, SO2 and O3 doesn’t have any correlation. This is because NO2 and SO2 are highly reactive and stay in
the air for very short time period, thus they have less contribution for concentration of pollutants like O3, PM
pollutants

Q4: Effect of wind on different pollutants?

• Wind has a similar effect on all the five major air pollutants (PM10, PM25, O3, SO2, NO2).
• All the five pollutants are microscopic, and PM10 is the largest among them, but they can still be scattered by the
wind for long distances (a few kilometers). The only difference is that SO2 and NO2 are highly reactive, so they
exist for a shorter time.

Q5: Any other information about wind?

• As wind flows from one location to another, it might bring pollutants along with it, and this might increase
pollutant’s concentration in one location and decrease in another location.

• Knowing the wind movement can help understand the source of pollutants or why there is a sudden change in
the air quality at a given point of time or location.

• And also, wind moves both spatially and temporally. Usually, air quality in a place will be highly influenced by
the wind from the nearest previous timestamps and flowing from the nearest spatial location. As wind flowing
from farther timestamps and farthest location lose its speed as it travels and might not have a heavy influence.

Q9: What are the influential features other than wind?

• Temperature is another important meteorological feature. The influence of temperature over air quality can be
considered for analysis depending on the data quality (data should be reliable, with no missing or erroneous
values).

• As temperature increases, the air moves faster, and thereby the pollutants can get scattered easily.
• Temperature and PM pollutants are positively correlated features.
• But since the temperature is large-scale (remains same for entire study area) and long term (remains same for
longer time period) feature and is not as dynamic and fluctuating as wind. It will be more insightful to understand
how wind influences air pollutants.
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