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Fig. 1. EnsembleLens facilitates the exploration of anomaly detection algorithms via three levels of analysis, namely, (a) the overview
as the macro level, (b) the correlation matrix view as the meso level, and (c) the ranking view as the micro level. (d) is for the validation.
The figure showcases the analytic process based on the Wisconsin-Breast Cancer (Original) dataset with 699 instances and 10
attributes. First, (a) and (b) indicate that LOF (C7, C8) and ABOD (C11, C12) have little correlation with the others because the
ensemble components generated by them are far from the major cluster, and the correlation matrix also shows their low correlation with
the others (i.e., few crossing lines, many blue bars around the glyph). (c1) illustrates that the iForest algorithm has better performance
for this dataset than LOF (c2), as most top-ranked points in (c1) are proved to be anomalous. By contrast, the top-ranked points in LOF
(c2) are normal and consistent. (e) is the combination rank list of all algorithms based on their weights.

Abstract—The results of anomaly detection are sensitive to the choice of detection algorithms as they are specialized for different
properties of data, especially for multidimensional data. Thus, it is vital to select the algorithm appropriately. To systematically select the
algorithms, ensemble analysis techniques have been developed to support the assembly and comparison of heterogeneous algorithms.
However, challenges remain due to the absence of the ground truth, interpretation, or evaluation of these anomaly detectors. In this
paper, we present a visual analytics system named EnsembleLens that evaluates anomaly detection algorithms based on the ensemble
analysis process. The system visualizes the ensemble processes and results by a set of novel visual designs and multiple coordinated
contextual views to meet the requirements of correlation analysis, assessment and reasoning of anomaly detection algorithms. We
also introduce an interactive analysis workflow that dynamically produces contextualized and interpretable data summaries that allow
further refinements of exploration results based on user feedback. We demonstrate the effectiveness of EnsembleLens through a
quantitative evaluation, three case studies with real-world data and interviews with two domain experts.
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1 INTRODUCTION

Anomaly detection is the identification of data points that do not con-
form to the expected patterns in a dataset. It is applied in a wide
range of domains, such as intrusion detection in cyber-security sys-
tems, fraud detection in financial transactions and disease detection
in public health [15]. Many anomaly detection algorithms, including
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supervised [70] and unsupervised algorithms [23], have been proposed
since the 19th century [2]. Most of them are for multidimensional
data. However, different anomaly analysis methods performed on mul-
tidimensional data are specialized for different properties of the data,
which means anomaly detection results are sensitive to the choice of
the algorithms and feature subspaces. This situation raises an open but
widely ignored question. How can data mining experts or algorithm
engineers properly evaluate, compare and select existing methods for
a given dataset, which can either generate a more effective detection
result or enumerate the prior algorithms for further development? En-
semble analysis has been introduced to solve this problem. Anomaly
ensembles select and combine heterogeneous anomaly detection results
to obtain a more robust set of outliers rather than some aspects of “the
whole truth”, which in turn can be applied to evaluate the performance
of anomaly detection algorithms [1].

Further, automated anomaly ensemble techniques have been recently
developed to support a more systematic selection of anomaly detection
algorithms [26, 48, 62]. However, the effectiveness of these techniques



is hindered by two inherent obstacles of anomaly detection. First,
rigid definition of anomalous points usually does not exist. Second,
high-quality labeled data for training the estimation model of anomaly
detection is usually unavailable or time-consuming to obtain. Even
when the labels are available, the performance metrics used to evaluate
the models are based only on accuracy (e.g., true positive rate) or algo-
rithm cost, instead of correlation, interpretation and reliable insights
of the ensembles. Hence, human judgment, a flexible and principled
exploration of the model behavior and the analysis results, is naturally
required to evaluate the candidate algorithms.

By contrast, recent advances in ensemble data visualization have
shown great promise towards understanding the relationships among
different models that construct the ensemble, as well as the connec-
tions between input data and output ensemble from multidimensional
datasets [17, 47, 75]. However, none of them was developed as an
expert tool to help algorithm developers explore anomaly detection
algorithms. It is of great importance to select the proper algorithms for
different anomaly detection tasks, where visual ensemble analysis has
a great potential to meet these requirements. After a comprehensive
investigation of these preliminary designs, we conclude three visual
analytics challenges in ensemble anomaly detection with multidimen-
sional data. (1) Comparison: difficulties are encountered in designing a
scalable visualization to compare multiple ensemble components based
on multiple criteria and along with the raw data context. Here we define
an ensemble component as one anomaly detection model generated by
one algorithm/detector with a specific parameter setting and a sampled
feature subspace of data. (2) Interpretation: designs that could visually
represent the model behavior or reveal the semantic meaning behind the
results by exhibiting the relationship between the choice of algorithms
and the ensemble result, as well as the pairwise correlations of ensem-
ble components themselves, are lacking. (3) Interaction: the needs of
supporting ensembles investigation, incorporating human judgment and
feedback, as well as iteratively guiding the system to produce a better
evaluation of anomaly detection algorithms have not been addressed.

To address these challenges, we introduce EnsembleLens, a novel
integrated visual analytics system for interactively exploring, analyz-
ing and selecting anomaly detection algorithms for different multi-
dimensional datasets. EnsembleLens employs an integrated model
based on ensemble analysis to formulate the unsupervised process of
algorithm evaluation, which incorporates a variety of baseline detec-
tion algorithms, feature bagging and ensemble combination functions.
Multiple coordinated views are provided in EnsembleLens to visually
represent the analysis results from different ensemble components,
supporting analytical tasks including summarization, reasoning, assess-
ment and correlation analysis. As its primary approach to implement
ensemble-based analysis of anomaly detectors, the system uses the
level of analysis (macro-meso-micro) exploration technique to display
the anomaly ensembles with different scales and semantics. Moreover,
EnsembleLens is closely linked with coordinated side views through
rich interaction to help understand the relationship between results and
users’ selection of anomaly detectors and features. Specifically, this
work makes the following contributions.

• System. We introduce an integrated visual analytics system that
provides a user-guided evaluation of anomaly detection algo-
rithms with multidimensional data based on ensemble analysis.
This system visualizes the correlation between different anomaly
detectors and illustrates the importance of these detectors by their
weights accounting for the optimized ensemble.

• Interactive Exploration. We adopt an interactive ensemble
approach that supports the construction of anomaly ensembles
through three steps: algorithm setting, feature bagging and en-
semble combination. To facilitate the exploration of anomaly
detection algorithms based on anomaly ensembles, we implement
the level of analysis (macro-meso-micro) visual analytics meth-
ods to provide a fine-grained evaluation of different detection
algorithms based on user feedback.

• Visualization Designs. We propose a set of visualization designs,
as well as layout algorithms for efficiently summarizing and eval-
uating the ensemble components generated by various anomaly
detectors. In particular, we propose a novel layout algorithm to
demonstrate the overview of different ensemble components, a

matrix view with a customized glyph to display the correlation
between each pair of ensemble components and a scalable ranking
list view with a “barcode” metaphor for comparing the detailed
outlier scores of different ensemble components.

• Evaluation. The effectiveness of EnsembleLens is demonstrated
in multiple forms of evaluation. We describe how EnsembleLens
works through three case studies with real-world data from the
UCI Machine Learning repository. Each case study is followed
by a quantitative study to evaluate the performance of ensemble
analysis result. We also conduct the expert interviews with two
researchers in the data mining domain.

2 RELATED WORK

This section provides an overview of research that is most related to our
work, which generally includes: (1) algorithms for anomaly detection
and their evaluation, (2) techniques for visual ensemble analysis, and
(3) visual exploration of anomaly detection algorithms.

2.1 Anomaly Detection Algorithms and Evaluations
Various anomaly detection related methods have been developed in
diverse research areas and application domains over the past decades,
including the traditional anomaly detection algorithms, the ensemble
approaches and the evaluation methods.

Anomaly Detection Algorithms. Generally, the objective of
anomaly detection is to find special patterns in data that appear to be
inconsistent with well-defined behavior [15, 37, 66]. Existing tech-
niques mainly fall into four categories based on how they model
and detect anomalies, including classification-based algorithms (usu-
ally supervised [35, 51, 76]), neighbor-based or distance-based algo-
rithms [8,12,34,42], statistics-based algorithms [7,77] and tensor-based
algorithms [13]. Various approaches have been taken to address the
problem with multidimensional data [18, 80]. For example, spectral-
based algorithms approximate the raw data to a lower dimensional
subspace, which includes multidimensional scaling (MDS) [45], princi-
pal component analysis (PCA) [68] and compact matrix decomposition
(CMD) [71]. Angle-based outlier detection (ABOD) evaluates the
variance between an abnormal candidate and all other pairs of points
from the perspective of angles [44]. Scatterplot matrices and parallel
coordinates represent data values across multiple dimensions [38]. All
of the techniques discussed are not comprehensive but represent dif-
ferent approaches. Our system adopts some of the most representative
algorithms from different categories as the baseline algorithms.

Anomaly Ensembles. Most of the aforementioned techniques are
specific to different observational features and fit only to parts of “the
whole truth” of anomaly detection. A general way to reduce imbal-
ance is the ensemble-based approach, which selects and combines
the anomaly detection results from a set of algorithms to obtain ro-
bust anomaly scores. Ensemble analysis [21] has been widely studied
and long proven effective for classification [32, 61, 63] and cluster-
ing [24, 28, 31, 74] problems. Existing attempts at anomaly ensembles
reveal their particular effectiveness in multidimensional anomaly detec-
tion [3, 40, 48]. For example, Nguyen et al. [53] and Fu et al. [26] con-
structed their ensembles by matching feature subspaces and anomaly
detectors within a time limit. The nature of ensemble anomaly detection,
comparing and selecting results from different algorithms according to
the data characteristics, inspired our research on evaluating different
algorithms for a given dataset. Yet, instead of using the anomaly ensem-
bles to generate a more robust detection result, we take advantage of
them to assist in exploring the baseline algorithms, thereby enumerating
the most effective detectors for different datasets.

Anomaly Detection Algorithm Evaluation. A number of meth-
ods have been proposed to evaluate the anomaly detection algorithms
with different evaluation metrics. The traditional method uses the
true positive rate or the receiver operating characteristic (ROC) curve
which merely considers the rank of outlier scores [3, 4, 8, 30, 39, 48, 56].
Such evaluation ways have been applied in many domains like mar-
itime navigation [5], video surveillance [6] and intrusion detection [36].
However, these methods have limited effectiveness for unsupervised
anomaly detection, because the ground truth for calculating the preci-
sion is lacking. A wider perspective on evaluating anomaly detection
results considers both the outlier scores and the ranking [27, 43]. For
example, Muller et al. [52] introduced an “outlier ranking coefficient”



for each instance based on an adaptive degree of deviation in differ-
ent subspaces. Goix et al. [29] proposed two novel criteria based on
existing Excess-Mass (EM) and Mass-Volume (MV) curves. When
comparing multiple detection results, the similarity or correlation of
the outlier scores is commonly used, such as Pearson’s r [57], Spear-
mans r [69] and Kendall’s t [41]. Advanced correlation coefficients
incorporate weights to different data points to provide more reason-
able evaluation [10, 46, 67]. Most relevantly to our work, Schubert et
al. [65] proposed a generalized view of evaluation methods to compare
different anomaly detection methods based on similarity of rankings
and anomaly scores. Although these methods are developed to evaluate
anomaly ensembles from different detection algorithms, they failed to
reveal the reasoning of anomaly ensemble comparison. Thus, assess-
ment and interpretation of the results are very difficult if not impossible.
The method proposed in our work offers a more fine-grained and inter-
pretative result, with the overall clustering of ensemble components,
the top-ranked items’ correlation and detailed explanatory information
about the outlier score ranking lists.

2.2 Visual Ensemble Analysis

Ensemble visualization is a non-trivial research problem [55] as the
ensemble data are usually large and multidimensional. Numerous visu-
alization approaches have been introduced to support ensemble analysis
for various purposes, for example, serving for weather forecast [47]
or climate model evaluation like SimEnvVis [54], Ensemble-vis [60],
Noodle [64] and Albero [20]. Also, ensemble data has been studied
for uncertainty visualization [17, 25, 59], as well as biomedical ap-
plications [22, 78]. These systems are designed specifically for their
applications based on the domain-specific assumptions and require-
ments. Compared with these systems, a more general work without
specific scenarios is EnsembleMatrix, which combines various clas-
sifiers according to the merits reflected by confusion matrices [72].
The methods to visualize and evaluate ensembles of these systems
can be broadly categorized into three types: (1) glyph-based visualiza-
tions [11, 33] that encode different aspects of data into distinct visual
representations, which possess low extendability to general multidi-
mensional data; (2) parallel coordinated views that compare different
ensemble components based on certain attributes, but fail to reveal the
detailed information involved in data [58, 75]; and (3) multi-charts or
matrix-based visualizations [9, 19] that effectively combine ensemble
comparison and detailed information.

However, none of these approaches are designed for anomaly detec-
tion applications. To the best of our knowledge, EnsembleLens is the
first system that applies visualization techniques to anomaly ensembles
and supports the exploration of anomaly detectors. Furthermore, the
visualization designs of existing systems face the issue of visual clutter
when the data size is large. Inspired by these early design guidelines,
we provide a level of analysis workflow that allows both general eval-
uation of ensembles and detailed comparison of rankings. Moreover,
the visualization is dynamic such that users can explore the changes
caused by different combinations of ensemble components and support
the evaluation of algorithms that produce the ensemble.

2.3 Visual Exploration of Anomaly Detection Algorithms

Although, a variety of works are related to visual anomaly detection
and algorithm evaluation [14, 49, 73, 79], they were developed to ex-
plore anomalous instances in specific application domains. Anomaly
detection evaluation possesses two inherent challenges: (1) no rigid
definition of which cases are exactly normal or abnormal, and (2) the
lack of labeled data for training and verifying models. These challenges
are further aggravated by the increase of data dimensions, where dif-
ferent features have different semantic interpretations. Some ensemble
anomaly detection studies have used the heatmap-based visualization
techniques to display the results from different algorithms. For exam-
ple, remix in [26] allows users to navigate the results with a heatmap
matrix that groups similar detectors. Schubert et al. [65] also used
the similarity matrix to compare various detection algorithms. All
these visualization designs are too simple to enable a comprehensive
exploration of different anomaly detection algorithms. By contrast, we
introduce a visual interactive framework based on ensemble analysis
that evaluates anomaly detectors with novel visual representations, rich

Fig. 2. System overview and data processing pipeline.

contextualized information and visual reasoning that assist users in
examining and refining their exploration based on their feedback.

To the best of our knowledge, EnsembleLens is the first visual ana-
lytics system that compares and evaluates different anomaly detection
algorithms for a given dataset in an unsupervised manner. Specifically,
we provide a scalable visual design of multi-attributes ranks to im-
prove the evaluation of anomaly detection results derived by anomaly
detectors which are diverse and only accurate to a certain extent.

3 SYSTEM OVERVIEW

Our system was designed to meet the real-world requirements for
selection of appropriate anomaly detection algorithms when the given
data is multidimensional or heterogeneous. We held regular research
discussion meetings with domain experts over a four-month period.
One domain expert is a project manager in the field of data mining and
data visualization. The expert has many years of research experience
and publications in analyzing urban data and anomaly detection. He
wanted to develop a specific anomaly detection model to monitor air
pollution. The other expert is a professor with domain knowledge in
visualization and anomaly detection. During these meetings, a variety
of design requirements were specified and preliminary designs were
assessed. Below, we list the most critical requirements (R1–R4) that
guided the design in our system.
R1 The ensemble generation. Build effective ensembles based on

heterogeneous anomaly detection algorithms to facilitate the eval-
uation of algorithms in terms of the parameter settings or the
feature subspaces for a given multidimensional dataset.

R2 Multifaceted comparison of anomaly detection algorithms.
Compare anomaly ensembles in different scales, from the sum-
marization (macro) to the correlation (meso) to the outlier score
ranks (micro), thereby allowing a comprehensive understanding
of the algorithms.

R3 Interpreting exploration results in context. Create useful vi-
sual designs to help users in comparing alternative anomaly de-
tection algorithms and understanding “when and why some al-
gorithms are good or not” with detailed sub-level information
of ensemble components such as pairwise correlation, feature
subspaces and algorithm settings.

R4 Human-in-the-loop ensemble analysis. Due to the lack of the
ground truth, users should be able to label the data during the
exploration, so that the system can conduct a refined evaluation
of anomaly detection algorithms based on user feedback.

Based on these requirements, we have designed EnsembleLens to
visually represent anomaly ensembles and yield improved evaluation
of anomaly detection algorithms. Fig. 2 illustrates the system architec-
ture and the ensemble-based exploration pipeline. The system consists
of four major modules: (1) prepossessing, (2) ensemble analysis, (3)
visualization, and (4) interaction modules. The prepossessing module
transforms raw data into a multidimensional format. Data filtering,
such as removing the attributes that are categorical or show strong
discretization effects, is also conducted at this stage. In addition, we
determine various feature subspaces for the baseline anomaly detec-
tion algorithms (R1). The analysis module runs anomaly detection
based on ensemble analysis, which not only generates varying outputs
of anomaly ranks but also calculates the pairwise correlation and the
overall distribution of ensemble components, thus supporting the level
of analysis comparison (R2). The visualization module uses multiple
coordinated views to support a comprehensive visual interpretation and
reasoning of the ensemble in a multifaceted context (R3). The inter-
action module provides an online, responsive interface to dynamically



Fig. 3. Anomaly ensemble pipeline: (1) feature selection, (2) algorithm enumeration, (3) ensemble generation, and (4) ensemble combination.

evaluate the anomaly detection algorithms. By using this module, users
can label the anomalous points and assign different weights to baseline
algorithms in real-time by incorporating their judgment (R4).

4 ENSEMBLE ANOMALY DETECTION

In this section, we first introduce the model used in EnsembleLens to
achieve the ensemble, which consists of three parts: feature bagging
algorithms, baseline anomaly detection algorithms and combination
algorithms. Then, we describe a novel method to evaluate different
ensembles components in a fully unsupervised fashion.

4.1 Feature Bagging
The first step in ensemble analysis is to construct a feature subspace of
multidimensional data, as illustrated in Fig. 3(1). For the table in Fig. 3,
each column represents a data point, and each row represents the feature
value for each data point. Feature bagging is a popular technique in
ensemble learning that samples different features in multivariate data
to reduce the variance between anomaly detectors [3]. EnsembleLens
implements three feature bagging methods based on two classic data-
based ensemble methods [3, 48] and an extended method considering
the correlation of features [26].

Random Feature Bagging. This algorithm has two steps, illustrated
in 3(1): (1) randomly select one number s from bd/2c to d �1, where
d is the number of feature dimensions in a given dataset; and (2)
randomly select s features from the dataset. This algorithm will have a
deteriorated performance when the selected features are highly related.

Non-Redundant Feature Bagging. This method also samples fea-
tures, but it constructs a feature subspace with less correlation by the
following four steps: (1) create a set Fp of features by calculating the
correlation between all pairs of the features and removes the one with
max correlation; (2) select the top-l features in Fp ranked by their
Laplacian scores; (3) sample a randomized family of subspace Fr to
maximize the coverage and diversity of the feature subspace; and (4)
obtain the non-redundant features Fnr that are the union of Fp and Fr.
The problem of this algorithm is the deteriorated bias characteristics.

Rotated Bagging. This method (Fig. 3(1b)) can reduce variance
without compromising bias too much by projecting data to a rotated
axis system before conventional feature bagging [48]. The overall
algorithm works as follows: (1) determine a randomly rotated axis
system in the data; and (2) randomly select r = 2+ d

p
d/2e directions

from the rotated axis system and project data along these r directions.

4.2 Baseline Anomaly Detection Algorithms
The second step is to enumerate baseline algorithms for the sampled
feature subspace (Fig. 3(2)). In order to decide which anomaly detec-
tion algorithms should be integrated, two principles are applied: (1)
cover typical anomaly detection techniques; and (2) control the whole
number of algorithms to maintain system efficiency. By testing existing
algorithms and surveying model-based ensemble paper, we choose six
representative anomaly detection algorithms from five categories.

One-Class Support Vector Machine (oc-SVM), from classification-
based algorithms, uses a hyperplane to distinguish two classes [16].
RBF (radial basis function) kernel is used in our system to deal with
high-dimensional data, and the kernel coefficient g is chosen as the
adjustable parameter in our system.

Kth-Nearest Neighbor (KNN) is a neighbor-based anomaly detection
technique that assigns anomaly scores to each data instance based on

the kth nearest neighbor [15]. K is the parameter that can be tuned in
our system.

Local Outlier Factor(LOF) is also one of the neighbor-based analysis
methods, but it is density-based [12]. It determines an outlier instance
a by comparing a’s k-neighborhood density to the k-neighborhood
density of a’s k-neighbors. We select K as the parameter.

Angle-Based Outlier Detection (ABOD) is a spectral-based algorithm
which identifies anomalous points a by calculating the angle-based
outlier factor (ABOF), which is the variances of a point’s difference
vectors with its k nearest neighbors. K is the parameter. [44].

Robust Covariance Estimation (RCov) is a statistic-based algorithm
that assumes the data follow a known distribution (e.g., Gaussian distri-
bution). We use the Mahabolis distances to determine the outlyingness
of a point from the known distribution. We set the proportion of points
to be included in the support of the raw MCD (minimum covariance
determinant) estimate as the parameter for this algorithm.

Isolation Forest (iForest) is a model-based method, which randomly
selects a feature and a split value in the range of the selected feature.
Then, it isolates data recursively by this step. The shorter the split
path is, the more likely the data is an anomaly [50]. The fraction of
the samples drawn from data to train each base estimator is the input
parameter for this detector in our system.

4.3 Combination Algorithms
Given the outlier scores from different ensemble components (Fig. 3(3)),
the last step we need to do is to combine the scores and form a final
result, as displayed in Fig. 3(4). There exist many combination meth-
ods, such as using the average or maximization scores from different
ensemble components. After trials in pilot experiments, we found that
the results or importance are imbalanced for different algorithms with
different datasets. Therefore, we choose the weighted averaging where
the anomaly scores are normalized to [0, 1] before combination as the
combination method in our system. For a given point r, its final outlier
score is calculated by:

O(r) = Â
l

w(l)O(r)l ,Âw(l) = 1,

where w(l) is the weight assigned to each ensemble component or
detector l, and the O(r)l is the outlier score for point r in l.
4.4 Anomaly Ensembles Assessment
Considering the unlabelled nature of real-world data, we need rea-
sonable evaluation metrics to assess the anomaly ensembles and their
components. We define the following metrics for assessment.

Average Correlation. Judging the similarity or correlation among
different rankings of anomaly scores is an important way to compare
and evaluate detection results [65]. Three most common types of
correlations are Pearson correlation, Kendall rank correlation, and
Spearman correlation. However, the Spearman correlation is only
correct for a total ranking with no ties, while the Pearson correlation
assumes that both variables should be normally distributed. These
requirements may not be met by all anomaly ensembles. Thereby, we
choose the Kendall rank correlation as the basic method. We formulate
the first evaluation score avgt of a given anomaly ensemble r as:

avgt (r) =
Â(j6=r,j2E ) tau(r, j)

|E | , tau(r, j) = p�qp
(p+q+ t)(p+q+u)

,



Fig. 4. The EnsembleLens system contains six interactively coordinated views: (i) a detector view, (ii) a feature subspace view, (iii) an inspection view
(global inspection view & correlation matrix view), (iv) a ranking view, (v) a validation view and (vi) a raw data table. Users can change the detection
mode in (a) and provide their feedback by using (b) after they label the detected anomalous points. The progress of exploration can be reflected by
(d) the real-time combination result. Raw data description can be obtained via informative tooltips. (c) is the color schemes used in different views.

where E is the set of ensemble components, p is the number of con-
cordant pairs, q is the number of discordant pairs, t is the number of
ties only in r, and u is the number of ties only in j. If a tie occurs
for the same pair in both r and j, it is not added to either t or u. A
reliable ensemble tends to have a higher avgt , which shows a strong
relationship with other ranks. Moreover, tau(r, j) is also used as the
correlation between two ensemble components, r and j, in our system.

5 VISUALIZATION

In this section, we present the design tasks derived from the require-
ments of visual ensemble anomaly detection and the specific visualiza-
tions motivated by these tasks.

5.1 Design Tasks
A list of design tasks were settled to guide the visualization designs
based on the requirements outlined in R1–R4. In general, a desired
visualization system should help users efficiently explore, analyze,
and select anomaly detection algorithms with contextualized visual
interpretation, comparison and reasoning of ensemble components.
In addition, the system should allow experts to update the ensemble
components and refine the detection results based on their feedback.
To fulfill these requirements, we consolidate the list of visualization
design tasks as follows.
T1 Show the ensemble overview. The visual design should clearly

reveal the the visual summary of ensemble components generated
by the baseline anomaly detection algorithms and their correla-
tions with others to provide explainable overviews of the patterns.

T2 Interpret anomaly ensembles in multi-attribute contexts. In
addition to the anomaly scores and ranks, the visualization should
be able to present the multidimensional data in the context of
corresponding feature values and their statistical information.
Such a schematic representation of anomaly patterns helps users
develop a mental model to understand various types of normal and
abnormal cases, which improves the capacity of users to judge
the performance of baseline algorithms and adjust their weights.

T3 Facilitate detector comparisons and correlations via ensem-
bles. The visualization designs should support a comparison

among different ensemble components or detectors in both ex-
plicit (showing the rank changes) and implicit (showing the statis-
tical value, such as correlation coefficient or similarity) ways.

T4 Enhance the visual reasoning of ensemble anomaly detection.
The visualization design and coordinated views in the system
should help users possess visual reasoning during their inspection
and judgment of anomaly ensembles, in the perspective of either
anomaly detector or feature subspace.

T5 Allow flexible selection and setting of anomaly detectors.
Users should be able to conveniently select and set the algo-
rithms and their parameters with rich interactions and visual cues
indicating the effect of user behaviors.

T6 Update evaluation results based on human judgment. To of-
fer the users a reliable result, the visualization should allow in-
corporating human judgment. Thus, users will feel satisfied and
confident about their detection results.

T7 Provide easy access to raw data. In spite of the significance of
the anomaly scores and ranks, the raw data that contain the feature
values are also essential for the determination and validation
whether a data point is an anomaly of interests.

5.2 User Interface
The aforementioned tasks guided our design of visualization and in-
teraction modules. As shown in Fig. 4, the user interface consists
of six major views, which are consistent with the macro-meso-micro
exploration workflow, and display the ensemble results with various
scales and semantics (T1, T2, T3). To support the macro and meso
level exploration, a primary inspection view (Fig. 4(iii)) displays an
overview of the generated ensemble components (macro) and the cor-
relation between different pairs of ensemble components (meso). At
the micro level, a ranking view (Fig. 4(iv)) further compares the de-
tailed ranks between a pair of ensemble components. A validation view
(Fig. 4(v)) takes the parallel coordinates design to record each combi-
nation result in terms of algorithms and their parameters, used features,
and final combined top detected anomalies. After the validation, a
novel detector view (Fig. 4(i)) reflects the importance of each baseline
algorithm and facilitates the re-setting of these algorithms to update



Fig. 5. Visual encoding of the correlation matrix view. (1) The glyph in the
matrix is composed of two halves, with each representing an ensemble
component in a row or column. The top 20 detected anomaly data points
for each component are encoded around the semicircular arc. (2) A line
is drawn to link the same point in both components. (3) The background
color of the inner circle indicates the correlation of the two paired compo-
nents. (4) The background color of ensemble component indicated the
evaluated weight. (5) The bars perpendicular to the circular arc represent
the top 20 detected outliers of the corresponding component, whose
color and length are determined by the change of the rank compared
with the opposite component.

the exploration result. In addition, there are some coordinated side
views. A feature subspace view (Fig. 4(ii)) lists the feature subspaces
for each ensemble component based on three feature bagging methods.
And a raw data table (Fig. 4(vi)) allows easy access to the raw input
dataset. Different color schemes are designed to illustrate the different
information (Fig. 4(d)). Basically, all the color schemes are in linear
scale, which corresponds to the linear value changes in the statistical
information, like correlation and weight. More design details of each
view are introduced in the following sections.

Usage Scenario. To understand how these views facilitate the ex-
ploration of baseline algorithms, let us consider the following scenario.
Suppose Alex is an algorithm engineer who is required to develop a
fraud detection algorithm for a bank. He uses EnsembleLens to do
some preliminary experiments for a set of alternative algorithms with
his financial transactions data. After loading the generated anomaly en-
semble into the system, he first observes the inspection view to compare
all the ensemble components in general. He finds an outlier, oc-SVM,
in the clustering, which also has little correlation with other compo-
nents. Then he clicks the pair of components of oc-SVM and compares
their top-ranked outliers in the ranking view. The dichotomous color
scheme used in this view reveals that one ranks from oc-SVM has many
anomalous attribute values. Thus Alex checks the raw data of the rank,
labels many data points that are indeed outliers and feeds back to the
system. The detector view then automatically updates the weights for
algorithms. Alex also inspects the feature subspace view to make sure
that the selected features for oc-SVM’s components are not significantly
different. He continuously conducts the exploration until the weights
distribution tends to be stable. All the generated ensemble components
and their detailed settings are recorded in the validation view during
the exploration, and can be later retrieved for more in-depth analysis.

5.3 Inspection View
The inspection view (Fig. 4 (iii)) contains two sub-views: (1) the global
inspection view displays the overall clustering of different ensemble
components at the top right (T1); (2) the correlation matrix view depicts
the correlation between different pairs of ensemble components at the
bottom left (T3). They support the macro and meso level exploration
of anomaly detection algorithms, respectively.

The global inspection view and the correlation matrix were divided
by the circles on the diagonal. Each circle on the diagonal represents
one ensemble component. The background color of the circle (ranging
from light to dark red) encodes the weight of the component based on its
importance for the explored dataset (Fig. 5(4)). Here, light red indicates
a low weight and dark red indicates the opposite. To eliminate the bias

of different anomaly detection algorithms, we provide two outlier scores
by using two different feature subspaces for each anomaly detection
algorithm (e.g., C1, C2 are two ensemble components for oc-SVM). A
total of twelve ensemble components (C1–C12) corresponding to six
anomaly detection algorithms are demonstrated by default.

5.3.1 Global Inspection View
At the macro level, we use a novel layout algorithm to show the
overview of multiple ensemble components by clustering analysis (T1).
Each circle in the top right area (Fig. 4(iii)) represents one ensemble
component and is linked with the circle on the diagonal, the size of
which represents the average correlation with other ensemble compo-
nents (ranging from -1 to 1). Also, the average correlation is indicated
by the filling color ranging from white to yellow, with -1 shown in
white and 1 shown in yellow (Fig. 4(c)). The distance between two
components shows the similarity. From this view, we can clearly find
the overall distribution of different ensemble components.

Layout Algorithm. We place the ensemble components in a 2D
triangle space. We first construct a vector for each component based
on their outlier scores. Then, we compute the similarity between each
pair of components based on the Euclidean distance of the ensemble
vectors. For the three components that have the least average similarity
with others, we fix their positions in the right triangular vertices, with
the leg length proportional to their correlation value between each other.
Next, for the remaining ensemble components, like e, we calculate their
position based on the Barycentric coordinate system:

e = a1e1 +a2e2 +a3e3,a1 +a2 +a3 = 1,

where e1,e2, and e3 are three points in the vertices, and ak is the
similarity between e and ek. Then the position of each ensemble can
be obtained by the Barycentric coordinates e1,e2, and e3.

5.3.2 Correlation Matrix View
At the meso-level, to further explore the differences among ensemble
components in performance, we design a matrix view on the bottom left
to show the correlation between different paired components (Fig. 5)).

Correlation Glyph. Each circular glyph G(i, j) (Fig. 5(1)) in ith row
and jth column reveals the comparison of Ci+1 with Cj in terms of their
correlation values and the top 20 detected anomaly data points (T3).
The correlation values are calculated by Kendall’s tau (See Section.4.4)
correlation and encoded by the filling color of the circle (Fig. 5(3)). The
color scheme for correlation is consistent with the global inspection
view (Fig. 4(c)). To display the relationship between two components
intuitively, the glyph is evenly divided into two parts with the left
accounting for Cj and right accounting for Ci+1. On each side of the
circular glyph, 20 bars are perpendicular to the circular arc, representing
the top 20 detected outliers of the corresponding ensemble component.
As shown in Fig. 5(5), two colors are used in this glyph to show the
direction of a data point’s rank change compared with the opposite side;
red indicates a rising one and blue indicates a falling one. The length of
the bar is determined by the amplitude of rank change. If one data point
is detected among the top 20 anomalies by both ensembles, a line that
links its position on both sides will be drawn (Fig. 5(2)). The reason to
select the top 20 is that the top detected outliers usually represent the
most significant ones to evaluate an anomaly detection algorithm [65].
From this circular glyph, users can clearly understand the multi-level
correlations between different ensemble components.

In addition, we provide an extra “Detector” mode to help find prior
algorithms more directly (Fig. 4(a)). The outlier scores of each compo-
nent (i.e., a detector) in this mode are computed by averaging all the
outlier scores from this detector. And the result detected in this mode
is consistent with the “Ensemble” mode.

To alleviate the workload of one-by-one comparison, our system
automatically highlights the recommended glyphs with black strokes
based on the correlation between the corresponding paired components.

5.4 Ranking View
At the micro level, the ranking view (Fig. 4(iv)), mainly serves for T3
and T5, is designed for users to explore the detailed relationships be-
tween two ensemble components from the inspection view. This view,
following a “barcode” metaphor, is implemented to show a variety of



Fig. 6. Ranking list in our system and two alternatives. Each row repre-
sents a data point, and the rectangles in each row represent the attributes
that use the same color scheme. Outlier scores are encoded differently.
Our design (a) uses the gap between two rows to encode the score
difference; (b) uses the text to record the outlier score; and (c) uses the
row width to indicate the outlier score.

related information to help users judge which ensemble component is
more reasonable in the perspective of the outlier scores and rankings.
Five types of information are encoded in this view. (1) Outlier score
rank: two lists of outlier scores that represent the ensemble compo-
nents (Cj & Ci+1) will be generated in the descending order when the
corresponding glyph G(i, j) is clicked in the inspection view. Each
row stands for one data point with the id in the front, and the width
of the gap between two bars encodes the outlier score difference (the
wider the gap goes, the larger the score difference is). (2) Data feature:
within each row, we use different columns to depict different features
of raw data. The feature value is indicated by the dichotomous color
scheme ranging from blue, to white to red (Fig. 4(d)), with red/blue
encoding a value higher/lower than the average (white). The darker it
goes, the higher/lower the value is [14]. (3) Rank stability: the height
of each row is encoded to express the rank variance of each data point
among all ensemble components. The larger the more unstable. (4)
Outlier score distribution: on the top of each ranking list, a histogram
is drawn to show the outlier score distributions of the corresponding
ensemble component. (5) Raw data: the raw data value of each feature
is provided by tooltips (Fig.4(e)). (6) Others: In each ranking list, we
display the top 100 ranked data points due to the space limitation. The
same point in the two paired ranking lists is linked by a line in case no
corresponding data point is found in the opposite list. An additional
rectangle beside each row is set to show the rank change, with red
encoding increasing and blue decreasing in ranks. These visual design,
together with rich interactions (described in Section 5.7), helps users
compare two ensemble components by their ranks.

Ranking List Alternatives. We consider several design alternatives
as shown in Fig. 6. Our first design alternative is to use the length of
each row to encode the entire outlier score (Fig. 6(c). However, some
data points have a relatively low outlier score, making the their feature
information cannot be clearly shown because the row width is too small.
Our second design alternative uses tabular design (Fig. 6(b)), in which
each column represents one feature, and the bar width encodes the
value of the feature. In this design, the last column is used to show the
outlier score. However, some datasets with many features cannot be
distinctly shown if we assign each column a narrow width. The rank
order and the relative score difference are essential for rank comparison.
In summary, both alternatives have the scalability problem.

5.5 Validation View
A parallel coordinates view in Fig. 4(v) is designed to describe the gen-
eral relationships among the generated ensemble components, which
helps in determining the final combination results. This view records all
the ensemble components and their corresponding algorithms, parame-
ters, and feature subspaces. Each line records one ensemble component
with a categorical color. The ranking list (Fig. 4(f)) displays the anoma-
lous points based on a weighted combination result of these components
(T2, T4). During the exploration, Fig. 4(f) will change accordingly.

The data labeled by humans are also highlighted in this ranking list to
help decide whether they can finish the exploration by judging whether
the combined ranking list is stable.

5.6 Additional Contextual Views
Several additional views are developed to assist users in exploring and
selecting anomaly detection algorithms.

Detector View. This view (Fig. 4(i)) uses a novel hexagon to show
the weight of the six baseline algorithms (SVM, RCov, iFores, LOF,
KNN and ABOD) during the exploration process. It is also a parameter
tuning tool for the algorithms (T5). Users can understand the impor-
tance of each algorithm with references to this calculated weight, which
is displayed on each side of the hexagon. In addition, users can tune
the parameter of each algorithm by dragging the nodes in the hexagon.
All the views are initialized with a value computed on the back-end
and will be updated based on the new parameters. The shaded areas
along each diagonal reveal the sensitivity intervals of each parameter.
Specifically, the wider the area is, the more sensitive the algorithm is
when tuning the parameter around this value.

Feature Subspace View. The feature subspace view (Fig. 4(ii))
shows the selected features for each ensemble component to provide a
visual reasoning for the ensemble analysis results (T4). Each sub-view
shows the features selected and method used towards the component. In
each polygon, the nodes representing specific features will be colored
if they are selected in this feature subspace, and the opacity of color
encodes its variance, ranging from dark purple (highest) to light purple
(lowest). Unselected features are encoded by the grey dots. In addition,
the relationships among all the selected features in each ensemble are
indicated by MDS and displayed in the middle of the polygon.

Raw Data Table. We also integrated raw data into a table for users
to refer to during the exploration and inspection (Fig. 4(vi)).

5.7 Interactions
We adopt the following interactions to support efficient exploration and
selection of anomaly algorithms among different views.

Querying and Filtering. Users can load different datasets via the
query box in the top of the inspection view and query newly generated
ensemble components by tuning the parameter in the detector view.
In the validation view, the parallel coordinate view supports the ex-
ploration of specific relationships between input setting and output
ensemble via brushing and filtering the axes. The rank slider (shown
in the top of Fig. 4(v)) can be used to focus the combination result on
selected ranks of interest.

Tooltips and Highlights. When users hover over the bar on the
ranking view or validation view, the associated raw data information
will be shown on the tooltip (Fig. 4(d), T7). Moreover, by hovering on
one glyph in the correlation matrix view, users can see the emphasized
links connecting the corresponding components in the overview. The
counter-wise highlighting also stands. Similarly, in the feature subspace
view, the nodes representing different features will be highlighted
together in the polygon and inner MDS plot.

Data Labeling. In the ranking view, users can label the detected
anomalous points by clicking the corresponding bars (T6). Then the
bar will be highlighted, and these data points will be stored and high-
lighted in the other ranking lists whenever they appear. The system will
immediately update the weights of each baseline algorithms based on
the labeling results via clicking the button in Fig. 4(b).

Zooming and Scaling. The inspection view supports zooming and
panning to obtain a clearer view of the correlation glyphs. The ranking
list can be scaled by dragging the line between two lists to see the
whole features, especially when there are too many features.

6 EVALUATION
We evaluate the usefulness and usability of our system in multiple
methods. First, we describe three case studies, where EnsembleLens is
applied to three real-world datasets from the UCI Machine Learning
repository. These datasets have distinct application domains: (1) the
Wisconsin-Breast Cancer (Original) dataset, (2) the Glass Identification
dataset, and (3) the QSAR Biodegradation dataset. The three case
studies have different data types, and use feature bagging methods. For
each case study, a quantitative evaluation is also used to further evaluate



Fig. 7. Exploration result of the Glass dataset. (a) shows the similar
correlation among all the detectors. (b) displays that the results of LOF
are sensitive to its parameter setting.

the effectiveness of our exploration results. Finally, we gather feedback
on our system from two experts in data mining domain.

6.1 Case Study I: Analysis of Breast Cancer Dataset
In the first case study, the dataset contains the inspection results of
breast cancer such as clump thickness or uniformity of cell size. The
dataset contains 699 instances with 9 attributes, and all the attributes
are integers ranging from 1 to 10. Moreover, the dataset has been
classified into two classes with a 34% outlier percentage, where we
consider the malignant class as outliers and the benign as inliers. To
reduce bias, we use the random feature bagging methods to extract two
feature subspaces for each anomaly detection algorithm. Thus, we get
an ensemble with 12 components in total.

Visual exploration and results. Following the macro-meso-micro
analytics workflow, the first feature that attracts our attention is the
overall distribution of the ensemble components, most of which are
clustered into one large category except two from LOF and ABOD
(Fig. 1(a)). The finding is also verified by the correlation matrix view.
The paired correlation glyphs from LOF and ABOD have many blue
bars surrounding the circle (Fig. 1(b)), and the middle circle in these
glyphs is a light yellow, indicating that LOF and ABOD generally
have little correlation with other algorithms. Moreover, we inspect
the detailed ranks generated by these two algorithms in the ranking
view. Obvious patterns are also discovered. As shown in Fig. 1(c2),
most of the top-ranked instances detected by LOF have a consistent
distribution of attribute values, which indicates they are very likely to
be the normal data points. Nevertheless, they have a large bar height,
which means these points possess a high variance in ranking among
different ensemble components, and the rank is not stable. As revealed
by our visual cues, we find most detected outliers from these two
ensemble components are incorrect after checking the raw data via the
tooltip. Thereby, we mark the findings and then the weight (importance)
of LOF is reduced accordingly. ABOD has a similar situation.

Furthermore, we notice a special case in the correlation matrix view
(Fig. 1(b)), where the two ensemble components (C5 3 & C6 3) from
iForest have the same outlier score ranking. We click the glyph and
find that most of the top-ranked instances in these two components
are actually outliers (Fig. 1(c1)). We label the data and update the
findings again, and the weight of iForest increases drastically. After
several additional loops, the weight of each detector tends to be stable.
Finally, we complete the adjustment as the combined results in Fig. 1(e)
are the expected outliers. The weights of each algorithm are: oc-
SVM (7), RCov (20), iForest (43), LOF (4), KNN (35) and ABOD (1)
(Fig. 1(d)). The reason that iForest performs best is not only because
of its high average accuracy or correlation with other algorithms, but
also that the top-ranked outliers from its ensemble components are
highly correct, consistent and stable during the exploration. In addition,
we inspect the feature subspace view and find that each algorithm has
diverse feature subspaces. Therefore, for RCov, iForest, LOF and
KNN, which have few differences when their parameters are changed,
their performances are thought to be mainly determined by the data
characteristics and integer attribute value. For the remaining algorithms,
their performances may also be affected by the parameter setting.

Quantitative validation. We validate our exploration results
through a comparison of the ROC curves with the six baseline al-
gorithms. We also provide an ensemble method (denoted as “EN”)
based on our exploration result, which is a combination of the baseline
algorithms with an assigned weight for each detector. The assigned
weights and the feature bagging methods (i.e., random feature bagging)
are consistent with our case study. As shown in Fig. 8(a), the ROC plot

validates the exploration result in our case study, where iForest and EN
have a higher true positive rate than the others when the false positive
rates remain low (below 0.1). KNN and RCov have a medium result
while LOF, ABOD and oc-SVM perform worst.

6.2 Case Study II: Analysis of Glass Dataset
In our second case study, we apply EnsembleLens to the Glass dataset
containing 10 attributes (the volumes of chemical composition such
as“Na”, “Mg” and “Al”) with real values. The glasses are classified
into seven classes based on their types. We choose class 5 as the outlier
class, thereby the outlier percentage is 6.1% (13/214). We apply the
rotated feature bagging to build the feature subspace because all the
chemical compositions are important for judging the class type.

Visual exploration and results. To get all the attributes involved,
we choose the ’Detector’ mode and explore the Glass dataset directly
in the perspective of anomaly detection algorithms. Both the clustering
view and correlation matrix view show that the results from different
detectors are similar to each other (Fig. 7(a)). Specifically, there are
many crossing lines in each glyph in the matrix view, and rank changing
bars around glyphs are relatively low, which indicates that the outlier
score rank of a given instance is not excessively changed in different
detectors. Then, we inspect the parallel coordinates view (Fig.4(5)), in
which we find an interesting case for LOF. As shown in Fig. 7(b), only
the average correlation of LOF was affected largely by its parameter,
whereas the others have similar rank scores across different parameter
settings. Therefore, we tune the parameter of LOF for several times
and check the outliers in ranking view. Although the rank calculated by
LOF changes significantly itself, the general positive truth rate had little
fluctuation. Finally, we stop our exploration when the result tends to be
stable. The inspection view shows that all the algorithms have similar
and stable performances in terms of both their correlation with others
and their top-ranked data points from the same detector. Therefore, we
suspect that the small size of the data is the main reason for the result.

Quantitative validation. We validate our exploration in a similar
way in case study I. We compare the six baseline results and an en-
semble method based on the weight for each detector obtained by our
system and the same rotated feature bagging method. As shown in
Fig. 8(b), the result is consistent with our exploration result. All the
algorithms, including our ensemble method, have a close ROC curve.

6.3 Case Study III: Analysis of Biodegradation Dataset
In our third case study, we analyze a dataset that has forty-one molecular
attributes to study the relationships between chemical structure and
biodegradation of the molecule. Originally, it contains ready (356) and
not ready (699) biodegradable molecules. We further down-sample
the ready class to 71 and consider them as outliers [3]. The outlier
percentage is 9%. Considering the high dimensional attributes, we
adopt the non-redundant feature bagging method which can extract the
most unrelated features for anomaly detection. Still, we generate two
feature subspaces for each detector to reduce bias.

Visual exploration and results. After loading the data, we imme-
diately find that the ensemble components have a sparse distribution
(Fig. 4(iii)). Then, we inspect the correlation matrix and distinguish
four components that have little correlation with the others, which are
generated by oc-SVM and ABOD. Most interestingly, although three
of them are barely correct, the top-ranked outlier points detected by
one component (C12 6) from ABOD have a very high true positive rate
(Fig.4(iv)). Hence, we label the correctly detected points in the ranking
view and the weight of ABOD increases. After several loops, we obtain
a stable result for the assignment of weights for baseline algorithms,
where ABOD is the best detector for high dimensional data, whereas
the others except oc-SVM have a similar but moderate performance.
The final result is: oc-SVM (8), RCov (12), iForest (12), LOF (11),
KNN (12) and ABOD (45). Although ABOD has low correlation with
the others, it is still the best. The result is reasonable because ABOD
usually has a better performance when the data dimension is high. We
further analyze the reason why the two components from ABOD have
totally different results. We observe the feature subspace view and
find an obvious contrast. The feature subspace for the component with
high accuracy (C12 6) contains fewer features than the others. This
indicates that some features might worsen the anomaly detection result,
and sometimes fewer subspaces are better for detecting outliers.



Fig. 8. Quantitative validation of three exploration results based on
EnsembleLens with datasets from three different domains.

Quantitative validation. Fig. 8(c) shows that the performance for
all algorithms except ABOD is not good, especially when the false
negative rate is low, which validates our exploration in EnsembleLens.

6.4 Expert Interview
We conducted semi-structured interviews with two experts to gather
qualitative feedback on the usability and usefulness of our system. The
first expert (E1) is a project manager who is leading a project about
personalized air quality and health management visualization system.
The second expert (E2) has highly relevant expertise in knowledge
discovery in databases. Both of them had never used EnsembleLens
before the interview. For each interview, we started with an introduction
about the purpose of EnsembleLens and the functions of each view,
followed by a tutorial with the Breast Cancer dataset. Then E1 explored
our system to search for appropriate anomaly detection algorithms
using his own data (one-year of Hong Kong air pollution records), and
E2 was asked to use EnsembleLens with the Biodegradation dataset.
More details about the interviews are provided in the supplementary
material1. Each interview lasted about 1.5 hours, during which notes
were taken, and we summarized them as follows.

System. Both experts regarded this system easy-to-use and power-
ful. “I have never imagined that multiple [anomaly detection] results of
my data can be compared in such an easy way!” E1 commended. E2
confirmed the effectiveness of our system as ABOD is among the best
algorithm for the Biodegradation dataset. He mentioned that both oc-
SVM and ABOD are useful for high dimensional data, and explained
why oc-SVM works worst in this situation, “oc-SVM usually performs
well when the inliers have multiple modes [clusters].” However, the
inliers of the Biodegradation dataset is unimodal with one big cluster
of data. Visualization. The visualization designs have generally met
the design tasks. E1 appreciated the inspection view due to its infor-
mative visualization design. By observing this view in his exploration,
he noted that KNN, LOF and ABOD often have high correlation and
he believed “this is reasonable” as the aforementioned algorithms are
all based on KNN. E1 also liked the ranking view, where anomalous
values of attributes, like O3 and NO2, are obviously revealed as outliers.
Both experts felt the correlation glyph is novel and useful. Adaption
of Workflow. The experts were able to utilize the capabilities of the
system in their analytics workflow.. For example, following the method
of macro-meso-micro visual analytics, E1 detected that ABOD actually
had a sound performance because many of its top-20 ranked outliers
were consistent with those detected by the others. Previously, he re-
garded ABOD as “bad” due to its low-average correlation with regular
algorithms like LOF or KNN. Furthermore, following the validation
and reasoning step, E2 could efficiently refine the evaluation results by
tuning the parameters or inspecting the feature subspaces.

1
https://lukeluker.github.io/supp/vast18_ensemblelens.pdf

7 DISCUSSIONS

There are some advantages and limitations when EnsembleLens helps
data mining experts to evaluate the anomaly detection algorithms prior
to model deployment. Compared with accuracy-based evaluation, En-
sembleLens can evaluate algorithms in an unsupervised fashion by
using the weight to indicate the overall importance. The weight is
evaluated by a comprehensive comparison of ensemble components,
from the overview clustering and the pair correlation to the top-ranked
outliers’ inspection, and will be continuously refined based on user
feedback during the exploration. Even when the accuracy is available
with the labeled data, EnsembleLens can provide interpretation and
reasoning for the results. For example, the case studies suggest that the
performance of anomaly detection algorithms can be affected by three
factors, namely, the algorithm setting, the data characteristics (applica-
tion domain, dimension and attribute type), and the feature subspace.
Specifically, case study III shows that ABOD tends to be more effective
when the data dimension is high, and the feature subspace can also
result in different performances for the same algorithm. Although we
can provide reasoning from the feature subspace view, one limitation of
our system is that users are unable to construct the feature subspace for
the algorithm. Currently, the feature subspace can only be changed at
the back end. One expert we interviewed mentioned another limitation
that our system does not provide enough automated recommendations
for the suspected ensemble components and data points during the
exploration, which could save the efforts of users further.

EnsembleLens can also be extended to help joint human-machine de-
cisions when the anomaly detection algorithms are deployed. Although
this system focuses on the exploration of algorithms, the ensemble
model and the analytics workflow we proposed can be widely appli-
cable. Specifically, the construction of anomaly ensembles integrates
the methods of feature bagging, algorithm enumeration and ensemble
combination, which allow the ensembles to be customized or optimized
at any stage. When generating the anomaly ensembles, the macro-
meso-micro analytics workflow provides a comparison of ensemble
components in different scales based on our visual representations,
especially the correlations among different components, which assists
users in selecting the most meaningful or suspected components to
check their outlier ranking. Finally, our system will update the anomaly
ensembles and generate refined results of outlier ranking with response
to user feedback. In this sense, our system can be used for interactive
anomaly detection. However, the main concern is that EnsembleLens is
designed from the perspective of algorithm interpretation but not data
interpretation. Therefore, there should be more visualization designs to
reveal the inherent characteristics or patterns in the data.

8 CONCLUSION AND FUTURE WORK

We have presented EnsembleLens, a novel visual exploration system
designed to evaluate the performance of different anomaly detection
algorithms based on ensemble analysis. EnsembleLens incorporates the
macro-meso-micro analytics method to promote an in-depth inspection
and comparison of anomaly ensembles with multidimensional data. We
proposed multiple coordinated views with rich interactions to support
the exploration. A novel visualization design is used to illustrate the
correlation between paired ensemble components. The system can
update the evaluation results iteratively based on human feedback. We
evaluated EnsembleLens through three real-world datasets from three
different domains and conducted interviews with experts in the data
mining area. These results demonstrated that our design can be used to
evaluate the importance of heterogeneous algorithms for a given dataset
and assign proper weight to each of them. In future, we intend to
supplement EnsembleLens with abilities that allow users to customize
feature subspaces for more reasoning analysis. Moreover, we will also
conduct additional experimental studies with domain experts’ data to
obtain more insightful evaluation of the usability of our system.

9 ACKNOWLEDGEMENTS

We would like to thank all the reviewers and domain experts for their
comments. This work is part of the research supported by HSBC
150th Anniversary Charity Program, NFSC Grants-61602306, and the
Fundamental Research Funds for the Central Universities.



REFERENCES

[1] C. C. Aggarwal. Outlier ensembles: position paper. ACM SIGKDD
Explorations Newsletter, 14(2):49–58, 2013.

[2] C. C. Aggarwal. Outlier analysis. In Data Mining: The Textbook, pp.
237–263. Springer International Publishing, 2015.

[3] C. C. Aggarwal and S. Sathe. Theoretical foundations and algorithms for
outlier ensembles. ACM SIGKDD Explorations Newsletter, 17(1):24–47,
2015.

[4] F. Angiulli and C. Pizzuti. Fast outlier detection in high dimensional spaces.
In European Conference on Principles of Data Mining and Knowledge
Discovery, pp. 15–27. Springer, 2002.

[5] M. Anneken, Y. Fischer, and J. Beyerer. Evaluation and comparison of
anomaly detection algorithms in annotated datasets from the maritime
domain. In SAI Intelligent Systems Conference (IntelliSys), 2015, pp.
169–178. IEEE, 2015.

[6] B. Auslander, K. M. Gupta, and D. W. Aha. A comparative evaluation
of anomaly detection algorithms for maritime video surveillance. In
Sensors, and Command, Control, Communications, and Intelligence (C3I)
Technologies for Homeland Security and Homeland Defense X, vol. 8019,
p. 801907. International Society for Optics and Photonics, 2011.

[7] V. Barnett and T. Lewis. Outliers in Statistical Data. Wiley, 1974.
[8] S. D. Bay and M. Schwabacher. Mining distance-based outliers in near

linear time with randomization and a simple pruning rule. In Proceed-
ings of the ninth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 29–38. ACM, 2003.

[9] M. Behrisch, J. Davey, S. Simon, T. Schreck, D. Keim, and J. Kohlhammer.
Visual comparison of orderings and rankings. In EuroVis, 2013.

[10] D. C. Blest. Theory & methods: Rank correlationan alternative measure.
Australian & New Zealand Journal of Statistics, 42(1):101–111, 2000.

[11] A. Bock, A. Pembroke, M. L. Mays, L. Rastaetter, T. Ropinski, and
A. Ynnerman. Visual verification of space weather ensemble simulations.
In Scientific Visualization Conference (SciVis), 2015 IEEE, pp. 17–24.
IEEE, 2015.

[12] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof: identifying
density-based local outliers. In ACM Sigmod Record, vol. 29, pp. 93–104.
ACM, 2000.

[13] N. Cao, C. Lin, Q. Zhu, Y.-R. Lin, X. Teng, and X. Wen. Voila: Visual
anomaly detection and monitoring with streaming spatiotemporal data.
IEEE Transactions on Visualization and Computer Graphics, 24(1):23–33,
2018.

[14] N. Cao, Y.-R. Lin, D. Gotz, and F. Du. Z-glyph: Visualizing outliers in
multivariate data. Information Visualization, 17(1):22–40, 2018.

[15] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A survey.
ACM Computing Surveys (CSUR), 41(3):15, 2009.

[16] C.-C. Chang and C.-J. Lin. Libsvm: a library for support vector machines.
ACM Transactions on Intelligent Systems and Technology (TIST), 2(3):27,
2011.

[17] H. Chen, S. Zhang, W. Chen, H. Mei, J. Zhang, A. Mercer, R. Liang,
and H. Qu. Uncertainty-aware multidimensional ensemble data visualiza-
tion and exploration. IEEE Transactions on Visualization and Computer
Graphics, 21(9):1072–1086, 2015.

[18] D. Dasgupta and N. S. Majumdar. Anomaly detection in multidimensional
data using negative selection algorithm. In Evolutionary Computation,
CEC’02. Proceedings of the 2002 Congress on, vol. 2, pp. 1039–1044.
IEEE, 2002.

[19] I. Demir, C. Dick, and R. Westermann. Multi-charts for comparative 3d
ensemble visualization. IEEE Transactions on Visualization and Computer
Graphics, 20(12):2694–2703, 2014.

[20] A. Diehl, L. Pelorosso, C. Delrieux, K. Matković, J. Ruiz, M. E. Gröller,
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