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Abstract. Mastery learning improves learning proficiency and efficiency.
However, the overpractice of skills–students spending time on skills they
have already mastered–remains a fundamental challenge for tutoring
systems. Previous research reduced overpractice through better prob-
lem selection algorithms authoring focused practice tasks. However, few
efforts have focused on reducing overpractice through step-level adap-
tivity, which can avoid resource-intensive curriculum redesign. We pro-
pose and evaluate Fast-Forwarding as a technique that enhances existing
problem selection algorithms. Based on simulation studies informed by
learner models and problem-solving pathways from student data, Fast-
Forwarding can reduce overpractice by up to one-third by not requiring
students to complete problem-solving steps if all remaining pathways
are fully mastered. Fast-Forwarding is a flexible method that enhances
any problem selection algorithms, though its effectiveness is highest for
selectors that preferentially serve difficult problems. Therefore, our find-
ings suggest that while Fast-Forwarding may improve student practice
efficiency, the size of its practical impact may also depend on students’
ability to stay motivated and engaged at higher difficulty levels.

Keywords: mastery learning, knowledge tracing, problem selection, intelligent
tutoring systems, data-driven optimization

Fig. 1: Fast-Forwarding reduces overpractice by avoiding problem-solving paths
students have fully mastered. In the example, linear equation-solving steps in
gray are known to be mastered by the student and can be fast-forwarded to
reduce overpractice.
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1 Introduction

The field of technology-enhanced learning has succeeded in optimizing problem
selection strategies and improving learning efficiency through methods such as
Bayesian Knowledge Tracing (BKT) [9]. BKT, one the most widely used knowl-
edge tracing algorithms, has proven effective in modeling student knowledge
acquisition, enabling tutoring systems to adaptively select practice problems
with relevant and adequately difficult skills. In addition, several extensions to
BKT have been proposed, including deep knowledge tracing- (e.g., [31, 35, 39]
and regression-based approaches such as AFM and PFA (e.g., [30, 13, 34]).

Adaptive problem selectors are informed by knowledge tracing and grounded
in mastery learning [5]. Mastery learning assumes that learning and instruction
can be divided into atomic skills that students acquire by exercising distinct cog-
nitive operations and receiving feedback from which they learn. This idea aligns
with large-scale evidence from several data sets [20] and has improved student
performance at scale [32]. Mastery learning underlies the design of many con-
temporary tutoring systems and the idea that students require several practice
repetitions–learning opportunities–to master each skill. On average, they require
seven [20]. However, when tasks or activity sequences are poorly designed, prac-
tice activities might lead to overpractice and underpractice of individual skills.

Overpractice occurs when students practice skills they have already mas-
tered, which is undesirable for learning efficiency if students have not yet mas-
tered other skills [8]. Overpractice typically occurs when students practice static
problem sets where problems include multiple skills, and there is little variabil-
ity in what skills the problems target. In contrast, underpractice can be due
to limited problem pools, meaning students do not master content upon com-
pleting a problem set or insufficient time to practice. While curricular redesign
based on learning analytics has been suggested as one method to mitigate over-
and underpractice [8], avoiding both remains a fundamental challenge in adap-
tive learning, with learning analytics frameworks on the data-driven redesign
of adaptive learning systems considering problem selection a core dimension for
design improvement [17]. In particular, the consequences of reducing overprac-
tice on learning are known to be positive: empirical research has shown that
reducing overpractice in CognitiveTutor geometry decreased practice time with-
out impacting learning outcomes [8], and such reductions have thus far required
a careful and labor-intensive curricular redesign. In the present study, we study
whether overpractice can be reduced through more automated means, based on
optimization of step-level adaptivity (“inner loop” [4]) and having the system
take over the mastered steps under some conditions. Such optimization balances
the allocation of repetitions, giving students time to master challenging skills.

One reason why the challenge of overpractice is not yet solved is that serving
practice problems with a single skill is not a solution to the problem, as multi-
step problems give learners important opportunities to learn, most notably when
completing two skills together is more challenging than practicing them in iso-
lation: the composition effect [14]. Therefore, it is important to develop novel
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ways for students to master the skills required to learn while optimizing practice
time and retaining multi-step problem solving.

An emerging approach to improve adaptive problem selection efficiency is
called focused practice. This approach involves isolating specific skills that the
learner currently lacks. Recent problem selection algorithms consider the overall
redundancy in mastery of knowledge and the degree of isolation of unmastered
skills in problem selection [15]. However, this approach still necessitates the
availability of a diverse pool of problems with sufficient breadth and variation
in skill density. Additionally, the requirement of designing focused tasks that
exercise a limited number of skills necessitates additional content authoring time.

Can a general-purpose, problem pool agnostic, and selector agnostic method
for focus practice increase student learning efficiency as measured in overprac-
tice? We propose Fast-Forwarding (Fig. 1), allowing learners to complete multi-
step problems up until the point all remaining problem-solving steps are mas-
tered and would hence only contribute to overpractice. Compared to prior ap-
proaches to focused practice [17, 8], Fast-Forwarding neither requires a spe-
cific problem selection mechanism nor depends on curricular redesign
while retaining multi-step problem solving. We quantify the effectiveness of Fast-
Forwarding across various contemporary and legacy problem selection methods
in intelligent tutoring systems through simulation. We ask:

RQ1: How much does learning efficiency as measured in overpractice benefit
from Fast-Forwarding in a mastery problem selector given limited practice
time?
RQ2: How much overpractice does Fast Forwarding reduce until content
mastery across different problem selection regimes?

To answer these RQs, we conducted experiments through simulation based
on solution pathways and parameters estimated from open-source data sets of
students practicing equation solving in a tutoring system. We chose equation
solving as a domain due to its recursive nature: foundational skills are often re-
peated at the end of solving for X. However, we note that the methods studied
here apply to numerous other domains of instruction with step-level
problem solving, for which tutoring systems are available [3]. In STEM
problem solving, science domain decisions tend to happen first (e.g., selecting
physics principles), while later steps involve algebra or arithmetic, which many
students may have mastered. In all of these domains, fast-forwarding could re-
move overpracticed steps by completing mastered steps on behalf of the learner.

2 Related Work

2.1 Learner Models and Problem Selectors

Various learner models have been developed to model students’ learning and
problem-solving behaviors. Bayesian knowledge tracing, arguably the most widely
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used model in adaptive learning systems today, models learners’ latent knowl-
edge of distinct skills as a probability of knowing each [9]. Other dynamic
probabilistic models have been proposed to model the dependency of different
learning concepts. For example, Learning Factor Analysis [7] modeled learner
knowledge states via logistic regression to deal with learning concepts at differ-
ent levels, and Performance Factor Analysis [30] fits distinct learning rates for
correct and incorrect responses. Other models, such as deep knowledge tracing,
use neural network architectures to model and predict learner performance [31].
These learner models measure learners’ mastery of different skills and how they
change with given practice opportunities.

Many problem selection algorithms use estimated content mastery in adap-
tive learning in diverse ways. Legacy mastery learning algorithms used in Cog-
nitive Tutor either select the problem with the most unmastered skills (hard) or
problems with the least, but at least one, mastered skills (easy) [2, 19]. However,
all these selection algorithms, while generally reducing student practice time [32],
are limited in that they require a static pool of content and skills. Few notable
exceptions exist, where tutoring systems have been designed to adaptively take
over specific, commonly overpracticed steps [33, 21]. Other researchers proposed
to supplement problem sets with focused tasks to reduce overpractice, which
are problems that target few skills simultaneously. They particularly designed
practice problems that involve only a focused set of skills that students have
not mastered and then selected these focused tasks with higher probability [16,
17]. However, designing focused tasks is time-consuming and requires content au-
thoring. Fast-Forwarding, the method proposed in this study, in contrast, can be
applied to any existing question pool and dynamically monitors whether certain
steps can be skipped based on mastery estimation to mitigate overpractice.

2.2 Learner Simulation

Simulating learner data to study learning processes and outcomes is a core
method in the field, particularly where obtaining real-world data is challeng-
ing, expensive, or impractical [10]. These simulations leverage cognitive learning
theories to generate performance patterns that can be used to refine instruc-
tional methods. For instance, past research has employed simulated learners to
identify skill models based on performance patterns, which were subsequently
validated on real learner data, leading to improved instruction tailored to these
identified skills [24]. Similar refinements have been applied to analyzing error
types [38]. Recent research, using Generative Adversarial Networks (GANs), has
also been applied to enhance the assessment of student knowledge through simu-
lation: Zhang et al. [39] augmented log data from tutoring systems using GANs,
which improved the reliability of knowledge estimates.

However, despite these advances in simulations for refining knowledge tracing
and instruction, there is a lack of simulated learner experiments that quantify
the impact of problem selection algorithms on practice time and efficiency. In-
stead, previous work has primarily focused on simulating the effects of setting
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mastery thresholds for error types [11] or on performance prediction given dif-
ferent mastery levels [29]. In addition, validating simulated learners on outcomes
of interest remains a key research challenge. According to a recent literature re-
view by Käser and Alexandron ([18]), a major issue in previous research using
simulated learner data is the lack of systematic studies on the validity of syn-
thetic data. However, there are exceptions, such as the work that used simulated
student data in tutoring systems to predict real student performance [27]. Simi-
larly, recent studies have increasingly used synthetic data to improve predictive
models and predictive validity [39]. Our research simulates the practice efficiency
of different problem selection strategies in tutoring systems. We incorporate em-
pirical estimates of learning rates and solution pathways into our simulations to
improve validity.

3 Methods

3.1 Study Context and Dataset

We utilize an open source dataset from APTA, a collaborative tutoring system
for middle school equation-solving [37] available on PSLC DataShop (datasets
#5549 and #5604). [22]. The study sample consists of data from IRB-approved
classroom studies conducted in math classes at two public suburban middle
schools in a mid-sized city in the eastern U.S. Overall, 164 6th to 8th grade
students engaged with a series of multi-step linear equation-solving problems.

We analyzed the data comprising 10,937 entries (N = 10,937) of completed
and timestamped problem-solving steps using the DataShop student step rollup
tool [22]. The log data provide a detailed description of the student solution
paths, meaning the order of operations used to solve individual problems. This
allows for a fine-grained analysis of skills (e.g., add constant) students employ
to derive solutions, offering deeper insights into their step-level problem-solving
processes and serving as reference pathways for our simulation studies.

We only considered students’ first attempts since they reflect the students’
initial response to solving linear equation steps without tutor assistance, with
steps exhibiting hint usage being classified as incorrect attempts [22].

3.2 Computation of Overpractice

We define overpractice on a skill as the number of practice opportunities (e.g.,
problem-solving steps) on a skill given a predicted error rate on that skill below
0.05, in line with the mastery criteria in the Lynnette tutor [26]. Table 1 reveals
several key findings regarding student performance and practice behavior across
different skills. This analysis served as a baseline for how much over-
practice was present in our data set with real students. Simulations, as
described below, where then used to determine how much students could po-
tentially save if they would have unlimited practice time and under different,
alternative problem solving regime scenarios.
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Table 1: Student mastery rates, practice and overpractice opportunities for each
skill based on student data. The first row shows the % of students who mastered
each skill, the second row the average number of problem-solving steps per skill,
and the third row the number of steps taken after mastery (overpractice).

cancel-
const

cancel-
var

comb-
const

comb-
var

division-
complex

division-
simple

simplify-
division

add/subtr-
const

add/subtr-
var

Mastered (%) 74.4 6.7 73.8 6.7 26.8 79.3 79.3 68.9 6.7
Avg Opps. 15.9 1.1 16.2 0.9 4.1 15.4 18.3 16.3 1.2

Avg Overpr. 6.4 0.5 6.7 0.5 1.5 7.8 9.8 6.2 0.5

Varied Skill Mastery and Practice Engagement The “Mastered” col-
umn indicates the proportion of students who achieved mastery for each skill,
while the “Avg Opps” column denotes the average number of completed practice
opportunities per skill. Average practice engagement varies significantly, with
some skills having a higher average number of completed practice opportunities
than others, such as division-simple.

Severe Overpractice The column “Avg Overpr.” delineates the average
number of practice opportunities associated with overpractice for each skill. A
considerable number of students experience overpractice across all skills. While
more students overpractise the skills, some students achieve mastery of them.

3.3 Fast-Forwarding

Fast-Forwarding is a novel technique introduced in Fig. 1 that terminates
practice problems early and forwards students to the next problem during the
active problem-solving process (“inner loop” [36]). Fast-Forwarding is a flexible
technique that can augment existing problem selection algorithms. Its only re-
quirement is access to a pool of multi-step practice problems–a precondition for
any step-level adaptation.

Fast-Forwarding optimizes practice efficiency by focusing on unmastered problem-
solving steps, allowing students to achieve proficiency more quickly without re-
dundant repetition of already mastered skills (i.e., overpractice). However, a
key consideration was to exclude unnecessary skills from the solution pathway if
and only if all remaining skills had already been mastered. This decision
draws on the literature about the composition effect [14], explained below.

Specifically, we did not adopt a model that would fast-forward students
through problem-solving steps for any skill they had already mastered in the
middle of the problem. Advancing students this way might limit the benefits
of practicing combinations of skills in multi-step problem solving; in that case,
unmastered in combination with mastered skills. This effect, known as the com-
position effect, suggests that a skill can be more challenging when practiced
alongside a second skill and may require integrated practice [14]. Thus, Fast-
Forwarding ensures students continue to practice skill combinations until all in-
volved skills are mastered, preventing premature advancement that could leave
important compositions unpracticed or systematically underpracticed.



Optimizing Mastery Learning by Fast-Forwarding Over-Practice Steps 7

3.4 Simulation Methodology

We simulate student performance (AFM; [7]) and trace student knowledge (BKT;
[9]) through two distinct models. AFM and BKT work together to simulate stu-
dent responses and different problem-selection regimes. Our simulations focus
on problem-solving processes at the step-level, in line with AFM [7] and prior
analyses of our study data [6].

Knowledge Tracing: Mimicking the knowledge tracing within the Lynnette
tutoring system, we employ BKT [9] to analyze student responses and consider
mastery to be achieved at a threshold of 95%, which is the threshold in our
study data’s Lynnette tutoring system [26]. BKT models student learning as a
hidden Markov process where each skill is represented by a binary latent state
(learned or unlearned). The model updates the probability of mastery based
on observed correct and incorrect responses, using four key parameters: prior
knowledge (pinit), the initial probability that a student knows the skill before
any practice, learning rate (plearn), the probability of transitioning from the
unlearned to the learned state on each opportunity, guess rate (pguess), the
probability of answering correctly by guessing when the skill is unlearned, and
slip rate (pslip), the probability of answering incorrectly due to a mistake when
the skill is learned. Given an observed response, BKT applies Bayes’ rule to
update the posterior probability of mastery. If a student answers correctly, the
model increases the mastery probability, accounting for possible guessing. If they
answer incorrectly, it decreases the probability, adjusting for slips. Mastery is
typically declared when the posterior probability exceeds a predefined threshold
(here, 95%). For our simulations, we used standard TutorShop BKT parameters
for all skills (pinit = 0.25, plearn = 0.2, pguess = 0.2, pslip = 0.1), ensuring
consistency with typical cognitive tutor implementations [1]. For this study, we
simulate 10, 000 simulated students that exhibit a normal distribution in initial
AFM proficiency levels.

Student Simulation: We simulate student learning data using AFM [7], a
logistic regression model of knowledge acquisition (represented as the probability
of getting a specific problem-solving step requiring a specific skill correct) as a
function of learners’ initial proficiency levels, skill-specific difficulty, and skill-
specific learning rates. To promote the validity of our methodology, we fit the
standard AFM model [7] to our open source data set (see Section 3.1) to obtain
estimates of student acquisition rates across different skills, which then serve the
simulation of performance in our experiments. Skill-level learning rates used for
simulation are encoded in interactions between the learning opportunity count
and the skill exercised at a given problem-solving step. This AFM learning rate
should not be confused with the BKT parameters for knowledge tracing serving
problem selection, where we use standard default settings from Lynnette, which
assume constant skill learning rates across all skills (see above), to mimic student
experiences in the original study.

We define prototypical solution paths for each practice problem based on
the most frequent skill-application path for each problem in our data. At each
step in the simulation, we sample a student response based on the correctness
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probability estimated by the AFM model. We update the AFM simulation and
BKT models before moving to the next step or practice problem. In line with
Lynnette [26], BKT mastery estimates provide a basis for all problem-selection
algorithms–including the proposed Fast-Forwarding method. To address RQ2
we implement a mechanism that replenishes the problem pool after it has been
exhausted, meaning that the problem pool is reset to its initial state. This mech-
anism ensures that the simulation only terminates once all skills are mastered.

Problem-selection Algorithms Fast-Forwarding offers a flexible method
for enhancing the efficiency of existing problem selection algorithms. To verify its
capabilities, this study integrates Fast-Forwarding into diverse problem selectors:

Random: Selects practice problem from the pool at random without re-
placement.
Deterministic: Selects practice problems following a domain expert-defined
order taken directly from the standard Lynnette set suite [26] designed to
surface increasingly difficult and complex problems over time.
Mastery Easy [2]: Employs student mastery estimates to select problems by
averaging the difficulty of all available opportunities and serving the problem
with the lowest difficulty based on mastery estimates while ensuring that the
problem has at least one unmastered skill.
Mastery Hard [2]: Employs student mastery estimates to select problems
by averaging the difficulty of all available opportunities and serving the prob-
lem with the highest difficulty, usually featuring the most unmastered skills.
This selector is the standard problem selector in Lynnette [26] and is evalu-
ated in RQ1.
Focused Practice [15]: More recent selection algorithm that considers prob-
lem difficulty while preferentially sampling problems with few skills via multi-
nomial sampling.

4 Results

4.1 Learning Efficiency Benefits (RQ1)

For the legacy mastery-based problem selector, Fast-Forwarding reduced over-
practice by 35.7% for the average student, as measured in learning opportunities
to apply mastered skills. Assuming a median number of steps, underpractice was
not changed by Fast-Forwarding (M = 0.44 for Fast-Forwarding vs. M = 0.43
without). Hence, Fast-Forwarding mitigates overpractice while not introducing
more underpractice, meaning that overall mastery levels do not suffer.

Fig. 2 shows the sum of overpractice across various skills averaged across
students. Overall, without Fast-Forwarding, overpractice is substantially higher,
which can be attributed to continuing practice without early termination of fully
mastered pathways. Notably, Fast-Forwarding removes overpractice entirely from
some skills. For example, in our sample, Fast-Forwarding removed overpractice
from the skills “subtract variable,”, “combining like variables,” and “cancel vari-
able.” These are skills that typically appear at the end of practice problems. The
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Fig. 2: Stacked bar plot showing the reduction in overpractice across skills when
Fast-Forwarding is applied.

same is true for skills involving handling constants. However, these skills may
also be required to set up more advanced skills through transformation, such as
division. These “set up” skills may not always be eliminated by Fast-Forwarding.
For example, 3x - 2 = 4 requires first subtracting as division by 3 upfront is not
permitted in Lynnette, which only accepts whole numbers [26]).

4.2 Effects Across Problem Selectors (RQ2)

One strength of Fast-Forwarding is that it does not depend on the specific
problem selection algorithm used. Fig. 3 shows the impact of applying Fast-
Forwarding on overpractice across various problem selection regimes. This sim-
ulation aimed to determine how much overpractice students would encounter
to reach mastery, assuming unlimited time. Notably, Fast-Forwarding consis-
tently reduced overpractice across all schedulers, ranging from 0.1% to 35.7%.
The largest reduction for the legacy mastery hard scheduler aligns with RQ1
findings, but with the difference that no learning opportunity limit was imposed
here, reducing overpractice somewhat more.

As error bars in Fig. 3 indicate, between-student variation in overpractice
differed across schedulers. As expected, random scheduling led to the largest
variation, and deterministic scheduling led to the second-lowest variation. De-
spite this variation, Fast-Forwarding still led to a notable reduction in overprac-
tice of 0.67 SD for this scheduler. Surprisingly, mastery easy led to the lowest
variation in overpractice and only marginal overpractice reductions from Fast-
Forwarding. Notably, the modest reduction in the focused practice scheduler
was concurrent with the second-largest variation in overpractice across students
(7.9%, corresponding to a reduction of 0.41 SD). We suspect this variation stems
from increased randomness in the scheduler, both choosing skills and problems
randomly. Accordingly, the mastery hard scheduler was more desirable from the
reported largest reduction in overpractice (35.7%; RQ1) and lower between-
student variation, corresponding to a substantial effect size of 3.4 SD.
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Finally, given the content unit being designed to include sufficient problems
to allow all students to master content, the deterministic scheduler, requiring
all problems, was associated with substantial overpractice, over ten times larger
than mastery-based schedulers. Overall, assuming students exert continued prac-
tice effort, mastery is obtained with the least overpractice for schedulers that
Fast-Forwarding, especially those who preferentially serve difficult problems.

Fig. 3: Overpractice difference across schedulers for Fast-Forwarding, including %
decreases when Fast-Forwarding is applied. Error bars are 2 SD across students.

5 Discussion

Mastery learning makes learners improve efficiently [32]. Problem selection is key
in improving learning analytics applications that support mastery learning, most
notably tutoring systems [17]. The objective of the present study was to evalu-
ate a novel method that promises to improve the efficiency of mastery learning
as measured in overpractice [7] while preserving multi-step problem solving and
its benefits to learning [14]. Through simulation based on parameters informed
by learner data, we applied our method, Fast-Forwarding student problem solv-
ing, to avoid overpractice across contemporary and legacy methods for problem
selection in a tutoring system.

5.1 Fast-Forwarding Under Legacy Practice Conditions (RQ1)

RQ1 focused on learning efficiency gains in a legacy mastery problem selector,
prioritizing hard problems given limited practice time. Informing practice time
by average step completions of students in an open-source data set and using
learning parameters from the same data, our analysis aimed at closely estimating
how much practice students could save by our Fast-Forwarding method. Under
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limited practice time, our findings indicate that students could save up to about a
third of overpractice in a linear equation-solving tutor [26] by Fast-Forwarding.
In particular, this overpractice gain did not come with an underpractice loss,
which means the overall efficiency of practice improved.

Although our findings are encouraging, they pose two central questions for fu-
ture research. First, while Fast-Forwarding is generally applicable to any mastery-
based problem selector and the content unit, equation solving is a task domain
that naturally affords a high level of overpractice: More complex problems re-
quire more steps than simple problems, and intermediate problem states are
similar to simpler problems, whose problem steps are repeated. Some of these
“foundational steps” at the end of equations were eliminated from overprac-
tice through Fast-Forwarding, for example, combining variables. However, other
task domains do not have such hierarchical problem structures, such that Fast-
Forwarding could potentially be less effective for such domains, which merits
future research. On the other hand, Fast-Forwarding could not eliminate all un-
derpractice in equation solving, potentially because some steps are required to set
up more complex, unmastered operations, such as division, where students first
need to subtract constants (a more foundational skill) to divide adequately (e.g.,
in 3x - 2 = 4, where division by 3 upfront is not permitted in Lynnette, which
only accepts whole numbers [26]). While it could be possible to fast-forward stu-
dents to the state 3x = 6 to just practice division, dealing with constants, in this
case, may pose an important learning opportunity, assuming a composition effect
whereby the same skill is more or less difficult depending on co-occurring skills
[14]. Although the current version of Fast-Forwarding preserves such learning
opportunities (by only fast-forwarding if all remaining possible operations are
mastered), future research may investigate to what extent learners could benefit
from intermediate forwarding.

5.2 Fast-Forwarding is Effective for High-Difficulty Selectors (RQ2)

Assuming unlimited practice time, RQ2 focused on the effectiveness of Fast-
Forwarding flexibly applied to different contemporary and legacy problem selec-
tion regimes. We find that, in a content pool designed for enough problems to
allow all students to master all skills, mastery learning as such already substan-
tially reduces overpractice compared to deterministic schedulers that require
learners to fully complete a unit before moving on. However, for all mastery-
based algorithms, including recent ones that try to create more opportunities
for focused practice and less overpractice [15] Fast-Forwarding further reduced
overpractice. However, it especially did so for selectors that prioritized difficult
problems while minimizing differences between students in overpractice, which
may be desirable for creating practice regimes that are equally effective for all
students [20]. One interpretation of this finding is that mastery algorithms that
prefer harder problems tend to serve problems with many skills (i.e., the legacy
algorithm used in this study tends to maximize the number of unmastered skills
in a problem). In contrast, mastery easy tends to serve problems with fewer
skills (with at least one unmastered skill) [19]. It is hence expected that longer
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problems allow for more opportunities for the Fast-Forwarding mechanism to
fast-forward the student, reducing overpractice to a larger extent. Second, selec-
tors that preferred harder problems in our selection also led to the least problem
selection overall. This is perhaps because, unlike mastery easy, such selectors
more heavily punish problems that include mastered knowledge, as mastery easy
only requires at least one skill in a problem to be unmastered.

5.3 Considerations Toward Applying Fast-Forwarding in Practice

While our findings suggest that Fast-Forwarding alongside selecting hard prob-
lems reduces overpractice most, it is not self-evident that such problem selection
regimes will be most effective for learning in practice. Although mastery learning
is effective [32], it can be difficult for students to maintain the effort required
to engage in practice. Studies published in the 1970s documented that student
participation in computer-assisted instruction decreased with difficulties below
80% expected accuracy and was high when problems were easy [28]. While moti-
vational theory suggests that a moderate level of difficulty is the most desirable
level for motivation, more recent research also suggests that novelty and variation
in learning tasks can compensate for some of the adverse effects of high difficulty
on motivation [25]. Similar compensatory effects have been observed for topics
of interest [12]. Therefore, given that engagement in practice is crucial for the
learning benefits of tutoring systems [20]; and ultimately, more important than
practice efficiency (i.e., much practice with a little overpractice will usually result
in more learning than little or no practice with no overpractice), future research
is required to determine to what extent Fast-Forwarding can benefit students
and their learning most. Although our findings suggest that Fast-Forwarding
is especially helpful in reducing overpractice in problem selectors prioritizing
hard problems, increasing difficulty (i.e., removing mastered skills) even further
through Fast-Forwarding may not always be desirable for student motivation and
engagement. Increasing the novelty of tasks to potentially and partially offset
this effect [25] could be realized through authoring additional focused tasks [23]
or potentially only executing Fast-Forwarding sometimes and at random, which
would also lower overall practice difficulty by occasionally including mastered
skills. Independently, current mastery thresholds (i.e., 95%) might be better if
they were higher to account for forgetting, an interesting question outside the
scope of our paper. These design considerations, including how to best intro-
duce and realize Fast-Forwarding in the tutoring system interface, are beyond
the scope of the present study and subject to future research.

5.4 Limitations and Future work

First, our findings are limited to a single domain (i.e., equation solving). Given
the portability of Fast-Forwarding to any problem selector and problem domain
with empirically derived student solution pathways, our findings merit future
research into more domains of tutoring, which our open-source code enables.1

1https://anonymous.4open.science/r/cut-early
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Second, our Fast-Forwarding implementation was limited because Bayesian
Knowledge Tracing (BKT) parameters were not fitted for individual students,
which may have impacted the precision of skill mastery predictions. Although
our BKT values used aligned with actual Lynnette settings [26], future research
should consider individual fitting BKT parameters to learner data for more pre-
cise problem selection and simulation.

Third, our findings are limited to a single skill model, while potential difficulty
factors in complex skill models may better describe the learner data [26]. A risk
of using Fast-Forwarding when applied to coarse-grain skill models is taking
away practice from difficult, hidden skills. Although skill model refinement is a
key challenge in data-driven tutoring system improvement [15], future research
may study what effects Fast-Forwarding has on coarse-grain skill models.

6 Conclusion

This study introduced the generalizable Fast-Forwarding method to enhance
mastery learning efficiency by reducing overpractice while preserving the benefits
of multi-step problem solving. Our simulations showed that Fast-Forwarding
reduces overpractice by up to one-third, particularly in selectors prioritizing
harder problems. This improvement makes it a promising tool for optimizing
tutoring systems, a key application area of technology-enhanced learning. These
findings suggest that balancing efficiency with task difficulty, which may reduce
student engagement if too high, should be a key consideration in future research
to improve learning in practice.
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