
CPVis: Evidence-based Multimodal Learning Analytics for
Evaluation in Collaborative Programming

Gefei Zhang
Zhejiang University of Technology

Hangzhou, Zhejiang, China
gefei@zjut.edu.cn

Shenming Ji
Xi’an Jiaotong-Liverpool University

Suzhou, Jiangsu, China
shenming.ji21@student.xjtlu.edu.cn

Yicao Li
Zhejiang University of Technology

Hangzhou, Zhejiang, China
yicaoli47@gmail.com

Jingwei Tang
Zhejiang University of Technology

Hangzhou, Zhejiang, China
jwtang@zjut.edu.cn

Jihong Ding
Hannan University

Haikou, Hainan, China
jhding@hainanu.edu.cn

Meng Xia
Texas A&M University

College Station, Texas, USA
mengxia@tamu.edu

Guodao Sun
Zhejiang University of Technology

Hangzhou, Zhejiang, China
guodao@zjut.edu.cn

Ronghua Liang
Zhejiang University of Technology

Hangzhou, Zhejiang, China
rhliang@zjut.edu.cn

ABSTRACT
As programming education becomes more widespread, many col-
lege students from non-computer science backgrounds begin learn-
ing programming. Collaborative programming emerges as an effec-
tive method for instructors to support novice students in developing
coding and teamwork abilities. However, due to limited class time
and attention, instructors face challenges in monitoring and eval-
uating the progress and performance of groups or individuals. To
address this issue, we collect multimodal data from real-world set-
tings and develop CPVis, an interactive visual analytics system
designed to assess student collaboration dynamically. Specifically,
CPVis enables instructors to evaluate both group and individual
performance efficiently. CPVis employs a novel flower-based visual
encoding to represent performance and provides time-based views
to capture the evolution of collaborative behaviors. Awithin-subject
experiment (N=22), comparing CPVis with two baseline systems,
reveals that users gain more insights, find the visualization more
intuitive, and report increased confidence in their assessments of
collaboration.

CCS CONCEPTS
• Human-centered computing→ Visualization systems and
tools; • Applied computing→ Collaborative learning.

KEYWORDS
Group visualization, education visualization, collaborative program-
ming

1 INTRODUCTION
Computing and programming have become integral components of
the foundational curricula in many countries, spurring the rapid ex-
pansion of introductory programming courses, which are frequently
taught in large-scale classrooms with hundreds of students [25, 76].
To manage these large classes, instructors employ diverse teaching
methods, such as collaborative learning and flipped classrooms, to
coordinate better and manage students [71]. In computer-supported

collaborative learning (CSCL), students collaborate in groups, en-
gaging in communication and interactions to perform high-level
cognitive tasks, such as learning programming languages, solv-
ing programming problems, and enhancing logical reasoning and
critical thinking skills [46].

Although research highlights the benefits of CSCL[46], instruc-
tors still face challenges in practice. In large collaborative program-
ming classes, theymust balance guidingmultiple groups with foster-
ing student engagement. This makes it difficult to closely monitor
group dynamics and individual performance, and to offer real-time
feedback during discussions[37]. Additionally, assessments often
focus on final solutions rather than the collaborative programming
process [53, 72], limiting instructors’ ability to provide feedback
on techniques or evaluate individual engagement, thus complicat-
ing the assessment of collaborative programming [53]. Most cur-
rent research focuses on evaluating general group discussions [43],
analyzing multi-person dialogue to extract discussion topics and
participant behavior patterns. These studies propose tools such as
context-based narrative meeting dashboards [51] and visual dis-
course analysis reports [54], significantly improving the efficiency
of group discussion evaluation. However, evaluating collaborative
programming in large classrooms requires more comprehensive
and multi-level analysis.

Collaborative programming is a dynamic process involving the
gradual evolution of problem-solving, meaning-making, and knowl-
edge construction [34]. Within collaborative programming groups,
students often switch between roles, such as the “Driver,” who
writes the code; the “Navigator,” who provides ideas; and the “Moni-
tor,” who checks each line of code for issues [32]. These role dynam-
ics and group interactions significantly impact students’ engage-
ment. Moreover, effective evaluation requires considering not only
students’ role changes but also group-level dynamics and collabora-
tion. Therefore, studying students’ engagement, behavior patterns,
and collaborative problem-solving skills from a process-oriented
perspective is essential for understanding the complexities of col-
laborative programming. To address this pressing need, we aim to
develop a visual analysis system that harnesses multimodal data and

ar
X

iv
:2

50
2.

17
83

5v
1

 [
cs

.H
C

]
 2

5
Fe

b
20

25

https://orcid.org/1234-5678-9012

Zhang et al.

advanced visualization techniques, empowering instructors with
comprehensive insights into collaborative programming and en-
abling them to evaluate group and individual student performance
with greater efficiency.

However, developing such a system involves overcoming three
key challenges. First, extracting potential problem-solving patterns
from unstructured data and analyzing their dynamic changes over
time is challenging. In addition to semantic analysis of speech, raw
data such as screen recordings and behavioral videos in program-
ming education complicate the analysis, while students’ diverse
and constantly changing roles in collaborative processes make it
difficult to capture and identify role transitions accurately. Second,
the visual design must balance intuitive representation and complex
data encoding (e.g., multidimensional, temporal, and comparative)
while presenting individual students and groups cohesively rather
than in isolation. Third, instructors need to combine individual
student changes with group patterns to gain deep insights into the
dynamics of collaborative problem-solving. To address the first chal-
lenge, we leverage large language models (LLMs) for fine-grained
semantic analysis and error detection of unstructured data, en-
abling the extraction of students’ dynamically changing roles while
reducing the time required for manual annotation [28]. Addition-
ally, we construct a learning analytics framework to evaluate the
performance of groups and individuals in collaborative program-
ming. For the second challenge, we design novel flower-based visual
metaphors to present student and group performance intuitively.
We also use timeline visualizations to reveal dynamic changes in
key features and patterns. For the third challenge, we introduce
CPVis, an interactive visual analytics system that provides instruc-
tors with perspectives ranging from overviews to detailed insights,
enabling the exploration of multidimensional learning dynamics in
collaborative programming.

The contributions of this study are summarized as follows:

• We propose an innovative set of visual metaphors to create
profiles for students and groups, facilitating the evaluation
and comparison of different groups and individual students
in collaborative programming.

• We develop CPVis, an interactive visual analytics system
designed for instructors to assess students’ problem-solving
processes and collaborative programming dynamics, facili-
tating quantitative assessment through the use of LLMs and
supporting the exploration of collaborative programming
performance from the holistic (group level) to the detailed
(individual level).

• We conduct quantitative, case, and user studies, demonstrat-
ing that CPVis’ multimodal learning analytics are intuitive
and effective, enabling instructors to quickly and efficiently
evaluate collaborative programming.

2 RELATEDWORK
In this section, we discuss the relevant research, including Program-
ming Education and Evaluation, Multimodal Learning Analysis in
Collaborative Programming, and Visual Analysis of Collaborative
Behaviors in Meeting.

2.1 Programming Education and Evaluation
As technology advances rapidly, programming skills are a sig-
nificant driving force behind social and economic development.
Whether in artificial intelligence [6], big data [49], or the Internet of
Things [12], programming plays a crucial role in these cutting-edge
technologies. The importance of programming education increases
globally, with programming being integrated into the foundational
curricula of many countries [72]. Instructors supplement program-
ming education by incorporating lab courses that encourage coding
practice [47]. Among the various teaching strategies employed in
these lab courses, collaborative programming emerges as a com-
monly used and effective method for teaching novices, fostering
teamwork and practical coding skills [19].

Though programming education is widespread, evaluating pro-
gramming skills in a large classroom remains challenging, par-
ticularly in assessing students’ code [76]. Researchers develop
tools that leverage LLMs to help instructors analyze code more
effectively [26, 31]. These tools provide insights into students’
code [20, 22] and facilitate code to identify patterns [40, 41, 74].
For example, VizProg uses CodeBERT to cluster solutions and visu-
alize coding progress in real-time [75], while CFlow combines LLMs
for semantic annotation and interactive views to identify patterns
in courses [76]. However, existing tools largely assessed code frag-
ments from collaborative programming in isolation, failing to con-
sider the collaborative behaviors and dynamics among students [61].
In contrast, CPVis analyzes final code submissions and students’
collaborative behaviors, enabling instructors to provide detailed,
evidence-based feedback that enhances students’ metacognitive
awareness and addresses deficiencies in their learning approaches.

2.2 Multimodal Learning Analysis in
Collaborative Programming

In collaborative programming, students work in groups to com-
plete programming tasks, share code modifications, and review
each other’s work [27, 36]. This method aims to improve students’
programming efficiency, code quality, and teamwork skills through
collaboration [13, 24]. To understand students’ interactions and
engagement, multimodal data such as conversations and screen
recordings from the collaborative programming process are typ-
ically collected [37, 66]. Multimodal Learning Analytics (MMLA)
provides new insights into students’ learning by analyzing various
data streams generated during the learning process, such as speech,
facial expressions, and gestures [9, 71]. For instance, multimodal
analysis in collaborative learning is pioneered by quantifying learn-
ers’ nonverbal behaviors through video segmentation to predict
academic performance [1]. Various types of multimodal data are
increasingly used to analyze collaborative problem-solving pro-
cesses in learning environments [34, 77]. For example, Mangaroska
et al. [37] combine multimodal data (camera, electroencephalogram,
eye-tracking) with cognitive load theory and affective dynamics
models to analyze problem-solving in collaborative learning. Al-
though these studies explored the analysis of problem-solving pro-
cesses, they are limited to extracting relevant metrics from multi-
modal data, lacking the capability to dynamically analyze students’
problem-solving processes over time in a narrative form.

CPVis: Evidence-based Multimodal Learning Analytics for Evaluation in Collaborative Programming

Collaborative programming is a complex form of collaborative
learning, involving various factors such as role transitions during
programming [32] and interaction patterns [79]. For instance, Lewis
et al. accelerate the speed at which students complete exercises
by intervening in the roles students play in collaborative program-
ming [32]. However, existing research fails to address the inter-
dependent development of other key dimensions such as teacher
scaffolding [46] and learning engagement analysis [28][68], focus-
ing instead on the impact of a single dimension on the collaborative
programming process [50]. These limitations highlight the need
for designing an innovative visualization framework to address the
unique challenges of tracking multiple metrics over time, clearly
representing interaction patterns in collaborative programming to
help instructors better understand and evaluate the collaborative
problem-solving process.

2.3 Visual Analysis of Collaborative Behaviors
in Meeting

Collaborative programming discussion is a form of multi-person
collaboration, and we focus on analyzing collaborative behavior
during meetings. In the visualization community, collaborative be-
havior analysis is explored across various applications, including
face-to-face [5] and online discussions [65], as well as real-time [57]
and post-meeting analysis [55]. These two dimensions can be com-
bined to form a larger design space. For instance, integrating face-
to-face discussions with real-time analysis reduces environmental
distractions and fosters more natural, seamless interactions [4].

Some real-time analysis systems [7, 11, 56], such as ClassBea-
cons, effectively visualize instructors’ time and attention allocation
through light objects on students’ desks, streamlining issue resolu-
tion during student discussions [2, 3]. Real-time analysis systems
focus on summarizing ongoing discussions without disrupting their
flow [23]. Similarly, Groupnamics provides an overview of parallel
groups in online classrooms, helping identify those needing inter-
vention [52]. However, post-analysis offers a distinct advantage for
task evaluation, as it provides a broader perspective to understand
better and assess the outcomes of collaboration. Some post-analysis
visualization systems, such as ConToVi, NEREx, and Meeting Me-
diator [14, 15, 29], focus on speaker behavior patterns over time
but do not fully capture the evolution of speakers’ problem-solving
abilities across different discussion topics. Moreover, these systems
primarily summarize single-session dialogues, lacking the ability
to analyze multiple groups or discussions simultaneously.

Studies analyzing group dialogues in classrooms typically fo-
cus on engagement and comprehension but often lack detailed
visual insights into the underlying problem-solving logic, strate-
gies, or intentions [18, 35, 62]. In this work, we focus on the post-
analysis of face-to-face discussions, emphasizing the collaborative
problem-solving process across multiple groups. CPVis incorporates
narrative-based visualizations to depict and compare the evolution
of dialogue, behavior, and engagement, providing instructors with
richer evidence to assess group dynamics and individual engage-
ment more effectively.

3 FORMATIVE STUDY
We conducted a formative study to explore instructors’ challenges
in collaborative programming and their visualization needs, with
the study protocol approved by our university’s Institutional Review
Board (IRB).

3.1 Participants
We recruited ten participants (five females, age: 30.6 ± 6.6) with
collaborative programming experience, divided into three groups:
two educational technology experts (E1, E2) and eight instructors
(T1–T8) with an average of 8.14 years of teaching programming.
Participants, recruited via snowball sampling from the authors’
network, received $20 as compensation.

3.2 Procedure
The formative study used semi-structured interviews conducted
via Zoom, divided into two sections: (A) Questions and Answers
and (B) Ratings. A: Questions and Answers. Each participant was
independently interviewed to explore the need for collaborative
programming analysis. Topics included teaching experience with
collaborative programming, class organization, challenges faced,
assessment methods, and group and individual performance eval-
uations. Follow-up questions were asked for clarification or more
profound insights. Each session lasted 40–60 minutes and was doc-
umented through written notes, audio, and video recordings. B:
Rating. Participants then rated two aspects of the collaborative pro-
gramming visual analytics system. They rated feature importance
(Q1) on a 1–7 scale (7 being the highest) and ranked features by
priority (Q2). More details are in appendix A.

3.3 Findings
3.3.1 Evaluation of Groups: In large classes, instructors struggled
to monitor each group without the help of teaching assistants.
They often relied on group presentations (E2, T1, T5), but it was
inaccurate. Limited class time forced instructors to focus on solving
issues rather than actively monitoring groups.

Group Performance: Evaluating group work was based on the
final code rather than the process, limiting the ability to provide
feedback (T7). Some instructors used presentations or technical
documentation to streamline assessments (T6). However, evaluating
more than 20 groups was still challenging, and instructor assistance
was often overlooked during evaluations.

Collaboration Evaluation: Effective collaboration wasn’t just
about task completion speed and group dynamics. Some groups
(T7) completed tasks quickly due to one member’s efforts, not true
collaboration. E1 proposed the collaborative problem-solving frame-
work to distinguish task effectiveness from team effectiveness. In-
structors (T6) believed monitoring discussion time helped assess
collaboration quality and task difficulty, but off-topic discussions
made it hard to evaluate group discussions (E1, T3, T5).

3.3.2 Evaluation of Students: In large classes, assessing individual
contributions in group work was challenging. Instructors relied on
peer evaluations (T2, T3, T4) and self-reported task distributions
(E2), which were often subjective.

Zhang et al.

Categories Communication behaviors Definitions Examples

Question
Discussion

Material reading [68] Students read the distributed material together. “Let's go over the handout the teacher gave us.”

Question allocation [78] Students explicitly assign a question to others or proactively self-
allocates a task. “You debug the code, I'll write the test cases.”

Question planning [78] Students list several questions remaining to be done to provoke
subsequent question allocation. “We still need to write the test cases debug the code.”

Question understanding [58] Students explore programming with peers without providing
detailed descriptions of Python coding. “There's a problem. This one hasn't been modified.”

Shared
Mental Model

Information sharing [78] Students proactively share information that no one asked. “I found a better algorithm that improves efficiency.”

Information request [78] Students ask someone else a question to obtain information. “How should this function work?”

Responding to request [78] Students provide information in response to a asked question. “This function takes two arguments……”
Acknowledgement [78] Students acknowledge receipt of information from others. “Okay”, “I agree”, “Got it”

Debugging [68] Students are debugging the final code. “There's a bug here, I need to double-check the values”
Collaborative
Programming

Python coding [58] Students provide detailed explanations of programming. “You switch to the function remove”

Print and evaluate code[58] Students write and test code in a cyclical process, continuously
writing and testing. “Let me run the code to see the results and then tweak it.”

Situation
Awareness

Escalation [78] Students ask for assistance from the instructor either verbally. “I think we need to ask the teacher about this.”
Unrelated chat among students
[58] Students engage in unrelated conversations with peers. “What are the other groups doing?”

Difficult-to-reconcile conflicts
[68] Students encounter conflicts that are challenging to resolve. “We've been debating which way to implement this”

Introduction Metaphors Case1 Case2System

Figure 1: Collaborative programming coding schemes, along with their definitions and examples.

Individual Performance: Instructors typically reviewed code
to assess understanding, but measuring individual contributions
in group work was hard. Leadership roles often reflected a deeper
grasp of concepts (T1), but tracking individual engagement was
difficult in large classes.

Personalized Feedback: Providing personalized feedback was
difficult, as group results often masked individual struggles. T3
and T4 noted that group collaboration fostered peer learning but
could lead to less engagement from weaker students. T8 added that
offering personalized feedback in large classes was time-consuming
and burdensome.

3.4 Design requirement
Based on the interview findings, we identified six design require-
ments (R1–R6) across three levels, summarized as follows:

Support inter-group-level to provide a macro perspective, en-
abling instructors to observe the overall situation of all groups
comprehensively and fully understand class-wide dynamics.

R1: Displaying the Overall Performance of all Groups. In-
structors face challenges in supervising multiple groups simultane-
ously and shifting focus efficiently. Participants stressed the need
for an overview of group performance, allowing instructors to grasp
class dynamics and selectively review specific groups.

R2: Comparing Similar and Different Groups. Instructors
often compare students’ performance to assess their relative stand-
ing within the class [38]. Such comparisons enable a more accurate
evaluation of group performance and help identify groups excelling
or encountering challenges.

Supporting intra-group-level visual exploration to offer a meso
perspective, enabling instructors to observe specific groups’ perfor-
mance and gain a comprehensive understanding of group dynamics
during the collaborative programming process.

R3: Understand the Dynamics of Programming Problem
Solving. Analyzing a group’s evolving communication patterns
and computational thinking during programming tasks provides
instructors with deeper insights into students’ progress and inter-
mediate learning objectives—details missed in final submissions
alone.

R4: Identify Teacher Scaffolding in Collaboration. Instruc-
tors play a vital role in guiding groups during collaborative pro-
gramming. Understanding the scaffolding provided and students’
responses can help refine instructional strategies, improving the
overall effectiveness of collaborative programming.

Supporting individual-student-level visual exploration to pro-
vide amicro perspective allows instructors to observe each student’s
performance within a specific group and better understand their
role and collaboration.

R5: Track Changes in Student Engagement Over Time. Lim-
ited classroom time makes it challenging for instructors to monitor
individual student engagement in programming tasks. Tracking
and visualizing engagement trends is essential for assessing perfor-
mance and refining instructional practices.

R6: Access Detailed Raw Data. Instructors require access to
raw data, such as collaboration videos, conversations, and back-
ground information. These details are crucial for validating analysis
results and supporting personalized feedback and assessments.

4 DATA COLLECTION AND PROCESSING
In this section, we provided an overview of the data collection con-
text and introduced the collaborative programming performance
framework along with its metric quantification methods.

4.1 Data Collection
We collaborated with Professor E1, an expert in programming ed-
ucation, and teaching assistants (TA1 and TA2), experienced in

CPVis: Evidence-based Multimodal Learning Analytics for Evaluation in Collaborative Programming

Question Discussion Shared Mental Model Collaborative Programming Situation Awareness Teacher Scaffold

Figure 2: (a) shows the bar chart of the raw data, (b) presents the results of applying Moving Average Smoothing to reduce
anomalies in prediction percentages, and (c) highlights the reduction of visual clutter and emphasizes sequential behavior
patterns after merging behaviors of the same category.

Python, to collect data from E1’s Spring 2023 Python course with 66
non-computer science freshmen in 22 groups. Using non-intrusive
methods, we recorded group discussions, screen activities (without
audio), and code submissions. Session lengths ranged from 10 to 60
minutes based on question completion. Due to data quality issues,
we selected data from 19 groups (57 students) for analysis.

4.2 Data Preprocessing
In collaborative programming analysis, students’ spoken content
was key to understanding discussion and evaluating collaboration.
We used the Faster-Whisper model [59] for speech recognition
and the Pyannote-audio model [48] for speaker diarization. For
groups lacking clear problem-solving strategies, we used Tesseract
OCR [44] to analyze screen recordings and extract key frames
through screenshots.

4.3 Scope of Collaborative Programming
Performance Framework

Evaluating student and group performance in collaborative pro-
gramming required considering multiple dimensions [25]. Building
on literature and expert input (E1), we proposed the following
comprehensive analytical framework to assess performance.

4.3.1 Student Performance Assessment. Previous research demon-
strated that students’ skills, backgrounds, and personalities in the
classroom vary significantly, affecting their engagement and learn-
ing outcomes [68]. Therefore, we focus on each student’s back-
ground (prior academic performance and major), role transitions,
behavioral engagement, and cognitive engagement.

Problem-solving Categorization: Based on previous frame-
works [68], team theory [78], and collaborative coding processes [58],
we developed a coding scheme (Fig. 1) to capture group problem-
solving in collaborative programming. The scheme used four color-
coded categories to represent discussion types. The first three cate-
gories followed a hierarchical structure, indicating discussion depth,
while the green category focuses on situation awareness and spe-
cific behaviors.

Building on the scheme, we used tailored prompts with the
ChatGPT-4o model [45] to classify behavioral patterns in tran-
scribed dialogue (More details are in appendix B). The model pro-
vided a prediction percentage of uncertainty for each classifica-
tion, improving result interpretability. To minimize anomalies,
we applied a “moving window” technique with Moving Average
Smoothing [8], stabilizing prediction percentages (Fig.2-b). To re-
duce visual clutter in long time-series data, we aggregated consec-
utive instances of the same category, averaging prediction percent-
ages (Fig.2-c). These results were displayed in the timeline panel’s
progress bar, enabling detailed analysis by zooming into specific
behavior categories in Sec. 5.4.4.

Roles Extraction:We analyzed each speaker’s dynamic roles
(Driver, Navigator, and Monitor) during programming [32]. Using
ChatGPT-4o and prompts based on the Thought Chain Model [67],
we guided the model through step-by-step reasoning to gener-
ate role classifications. Prompts were iterated for clarity, and the
model’s responses were structured hierarchically and returned in
JSON format. Each query was repeated ten times, with the majority
result adopted for classification.

Behavioral Engagement: reflected the level of effort and partic-
ipation students invested in learning [17]. In our study, we focused
on the duration and frequency of student speech. We extracted
conversation data, excluding irrelevant chat, and divided each con-
versation into two parts: the first half and the full conversation. We
then measured speaking duration, frequency, and degree centrality
using co-occurrence networks [42]. For each question, we created
and normalized two networks, followed by Non-negative Matrix
Factorization (NMF) [30] to identify key behavioral patterns for
dynamic group comparison.

Cognitive Engagement: referred to the cognitive investment
students made in their learning. We highlighted the role changes
and behavior frequencies of students during the collaborative pro-
cess. To capture dynamic changes in student cognitive engagement,
we split the dialogue for each question into two segments: the first
half and the full dialogue. We extracted the frequency of each
speaker’s 14 behavioral categories and their roles at each times-
tamp. After normalizing these features for consistency, we applied
NMF to reduce dimensionality and assess each speaker’s cognitive
engagement.

Zhang et al.

CPVis
Detail View

Group 10

Group 18

Group 10

Group 18

1801 (0.0-16.00): I remember last time there was, oh

here it is, create a new one, just capture it directly, let's

start with the first one.

1801 (16.00-23.00): One of the recordings is not included

in it.

1803 (24.00-35.00): Okay, let me check, the first one is,

is this being recorded?

1801 (37.00-42.00): Oh no, it hasn't started yet, forgot to

record.

1801 (46.00-56.00): Good thing you reminded me

Question5

Question1

0000 (2006.0-2011.0): 1 X, for X, you you. You're saying

not to use a list, right?

1002 (2012.0-2015.0): It's because this symbol inside

can't take a list.

0000 (2015.0-2055.0): 1 Oh oh, then you just do it this

way, here it's not a comma, it's a dot. The dot isn't two

Ns, oh, don't need this anymore, just add a colon, right?

And then don't use a here, and then just print a below,

print a, print parentheses with a, parentheses, with a,

press F to run it. Confirm, confirm, dot format dot.

Group 10 Group 18

1001

1002

1003

Question Discussion Shared Mental Model Collaborative Programming Situation Awareness Teacher Scaffold

Behavior: High-control cognitive

scaffolding

Percentage: 100%

Explanation: Instructor provides

detailed explanation and coding

instructions.

P
re

di
ct

io
n

P
er

ce
nt

ag
e

(%
)

1 5

Cognitive Engagement Behavioral Engagement

Content View
Codes Student projection & Group pattern

Score: 4.85 /
 Code Integrity (35%

 Score: Excellent (5
 Explanation: The code is largely structured and well-organized.

Group 10 Q1 Q2 Q3 Q4 Q54.48

Score: 4.5 /
 Code Integrity (35%

 Score: Good (4
 Explanation: The code is well-structured and readable, but using `eval()` for input

poses security risks and potential issues with malicious or poorly formatted data. A
safer approach is to use `int()` for input conversion.

Group 18 Q1 Q2 Q3 Q4 Q54.21

Most DifferentMost Similar

Filter View

Fail Pass Moderate Good Excellent
Non Teacher

Scaffold
Teacher

Scaffold

Searching Group:

Driver Navigator Monitor

10

Group 18 Group 6

Group 20 Group 3

Group 10

Group 18

A1

A1a

B1a

B3e

B3d

B3c

C2a

A1b

A2

A3

B1

B2

B3a

B3b

C1

C2

CBA

Figure 3: A screenshot of Group 10 view. CPVis applies multimodal learning analysis to provide instructors with evidence for
evaluating group and student performance. It consists of three views: Filter View (A) Provides an overview and allows group
selection. The selected groups appear in the lasso selection area (A2), and the similarity panel (A3) displays the most similar
and different groups based on the search (A1a). Content View (B) Displays group performance, with the B1 panel showing
completed codes, the B3a panel illustrating the behavior sequence, and the B3b panel showing student engagement over time.
Detail View (C) Presents the group’s collaborative programming video (C1) and raw conversation data (C2).

4.3.2 Group Performance Assessment. We evaluated group per-
formance based on three dimensions: code quality, collaborative
problem-solving, and teacher scaffolding. Through in-depth discus-
sions with domain experts, we assessed how each dimension was
valued and measured in the context of our study.

Code quality, reflecting students’ mastery of course concepts,
was a key metric for evaluating group performance. To assess stu-
dent submissions, we used ChatGPT-4o [45] to evaluate dimensions
such as problem-solving, code integrity, accuracy, and algorithmic
innovation, scoring each on a 1–5 scale. After refining evaluation
prompts, we ran the assessment ten times per submission, averaging
the results to ensure consistency and reliability.

Collaborative Problem-Solving (CPS): Earlier studies catego-
rized CPS into team effectiveness and task effectiveness [50]. Team
effectiveness was measured by student engagement, while task ef-
fectiveness was assessed through code quality. To evaluate CPS, we
examined task effectiveness, represented by the average question

score (𝑠), and team effectiveness, assessed through the standard de-
viation of engagement (𝜎𝑒) and the average engagement score (𝑒) as
shown in Equation 1. We then used the coefficient of variation (𝐶𝑉𝑒)
to account for both engagement variability and engagement. Finally,
the overall collaboration quality was calculated using Equation 2,
combining question performance and engagement balance.

𝜎𝑒 =

√√
1
𝑛

𝑛∑︁
𝑖=1

(𝑒𝑖 − 𝑒)2, 𝐶𝑉𝑒 =
𝜎𝑒

𝑒
(1)

𝑄𝑢𝑎𝑙𝑖𝑡𝑦 = 𝑠 · (1 −𝐶𝑉𝑒) (2)

As shown in Table 1, Group 19, despite achieving a respectable
average score, exhibited imbalanced engagement, leading to a lower
collaboration quality score. In contrast, Group 20 demonstrated
more balanced and higher engagement, resulting in a better overall
collaboration quality.

Teacher Scaffolding, categorized into cognitive (low, medium,
high-control) and metacognitive forms [46], reflected the level of

CPVis: Evidence-based Multimodal Learning Analytics for Evaluation in Collaborative Programming

Group 𝑠 Engagement Levels 𝜎𝑒 CV𝑒 CQ

Group 19 4.11 (10.515, 9.725, 4.575) 2.80 0.24 2.80
Group 20 4.14 (10.06, 9.32, 8.62) 0.73 0.08 3.88

Table 1: Comparison of Group 19 and Group 20 on Collabo-
ration Quality (CQ).

support provided to a group and its impact on programming per-
formance. We evaluated four scaffolding dimensions, leveraging
GPT-4o for annotation. By using targeted prompts and examples,
we improved classification accuracy, while teacher scaffolding was
categorized according to the type of support based on a semantic
analysis of interactions.

5 SYSTEM DESIGN
In this session, we introduce CPVis (Fig. 3), a web-based visual
analytics system to assist instructors in evaluating collaborative
programming.

5.1 System Overview
CPVis is a comprehensive system supporting multi-level, progres-
sive analysis, from group-level interactions to individual student
performance. Instructors can select specific groups for focused
analysis, such as comparative evaluations (R2). Additionally, CPVis
offers a drill-down feature, enabling an overview of student collab-
oration and detailed insights into individual performance. CPVis
includes four main components: Initial Selection, instructors can
select groups using the lasso tool or search function in the “Group
Overview” view (Fig.3-A1). The system displays an overview of the
selected groups (Fig.3-A2), compares similar and different groups
(Fig.3-A3), and synchronizes updates across views (Fig.3-B). Drill-
Down Analysis, instructors can examine the group’s code (Fig.3-
B1) and analyze problem-solving approaches in the Content View.
The interaction pattern panel (Fig.6-B2b) reveals behavior patterns,
while the timeline panel (Fig.3-B3a) shows activity sequences. The
student overview panel (Fig.6-B2a) compares individual perfor-
mance across the class, and the timeline panel (Fig. 3-B3) highlights
engagement and role changes.Multi-Level Interaction, the sys-
tem’s layered visualization allows instructors to explore and analyze
both group and individual behavior, enabling precise assessment
of the collaboration process. It also supports side-by-side group
comparisons. Detailed Review, the detail view (Fig. 3-C) provides
original discussion videos and transcripts, enabling in-depth analy-
sis of student conversations and problem-solving processes.

5.2 Visual Design
We iterated continuously during the glyph design process to op-
timize the visual representation. Initially, we used a star-shaped
design (e.g., radar charts), as shown in Fig. 4. While radar charts ef-
fectively displayed behavioral and cognitive engagement, dividing
the chart into sections for individual tasks introduced an unnec-
essary dimension (shape size) that was meaningless and prone
to misinterpretation. We then shifted to a circular design, encod-
ing behavioral engagement as the radius of a sector and cognitive
engagement as the color of the outer ring. However, this design

2
1

1

2

Colors represent roles

2

1

Cognitive engagement value1
Behavioral engagement value2

Figure 4: The iterative design of student glyphs: 1 represents
cognitive engagement, and 2 represents behavioral engage-
ment.

had a significant flaw: color mapping was less intuitive than size
mapping, and using color saturation as a visual channel lacked
precision. Additionally, both designs struggled to combine individ-
ual students into group glyphs intuitively. Inspired by previous
research [62, 63, 70], we introduced a visual design inspired by the
flower metaphor, where students are represented as flowers (Fig. 5).
The size of the petals represented behavioral engagement, while
the size of the stamen indicated cognitive engagement. Three colors
were used to represent three different roles, and the varying colors
of the leaves symbolized different levels of teacher scaffolding. The
number of butterflies reflected the level of collaborative problem-
solving ability. As a result, the overall group glyph naturally took
the form of a bouquet (R4). This approach resolved the issue of
merging individual students into group glyphs while enhancing the
design’s readability and intuitiveness (R1). The final design struck a
balance between aesthetics and functionality, effectively conveying
the performance of individual students and groups, allowing users
to quickly compare similar or different groups (R2).

5.3 Filter View
The Filter View (Fig. 3-A) serves as the starting point for analysis,
featuring an interactive projection panel (Fig. 3-A1) and a similarity
panel (Fig. 3-A3) to help users filter and explore groups of interest.
The projection panel displays the distribution of groups in a 2D
space to reveal clustering patterns and outliers. We apply the t-
SNE algorithm to maximize separation between dissimilar groups,
creating clearer clusters. To avoid visual clutter caused by group
glyphs in dimensionality-reduced views, we follow the approach of
Tac-Miner [64], representing groups as points or rectangles based
on whether they received teacher scaffolding, with color coding
reflecting prior performance. Additionally, the outer arc represents
the duration of the discussion. Users can select groups using the
lasso tool (Fig. 3-A1b) or search for specific groups (Fig. 3-A1a). The
similarity panel (Fig. 3-A2) shows the most similar and dissimilar
groups based on Euclidean distance.

5.4 Content View
Once the search group is selected, users can perform a detailed anal-
ysis through the content view (Fig. 3-B). This view comprises four
panels, allowing for a layered exploration of group and individual
student performance.

5.4.1 Codes Panel. In the upper left corner of the content view, a
control button (Fig. 3-B1) allows users to toggle between the Codes
panel and the Student Projection/Group Pattern panels. Below,

Zhang et al.

Introduction Metaphors System

Every Petal

Petal color
Role

Stamen Size
Cognitive Engagement

Every Question

Petal Size
Behavioral Engagement

Leaf
Teacher Scaffold

Butterfly
Level of Collaborative
Problem-solving

A. Metaphors D. Samples

C. Color Encodings Driver Navigator Monitor

I. Questions and Petal Order

II. Petal Size with Behavioral
Engagement

III. Petal Color with Role

Low-control cognitive scaffolding
Medium-control cognitive scaffolding
High-control cognitive scaffolding
Metacognitive scaffolding

B. Visual Encodings

IV. Stamen Size with
Cognitive Engagement

Figure 5: The flower metaphor in CPVis, along with its visual encoding, color coding, and some samples.

users can compare the code quality between the selected group
(left) and a comparison group (right). For instance, Figure 3-B1
shows Group 10’s answer to Question 5 (left) and Group 18’s answer
(right). Hint boxes provide two types of feedback: red tips indicating
code deficiencies (Fig. 3-B1a) and pink tips showing that a method
was learned from pre-class materials, signaling comprehension,
and application. Below the code, the ChatGPT-4o score and its
rationale are provided, enabling quick, in-depth code evaluation
and highlighting areas where groups faced challenges.

5.4.2 Students Projection (Fig. 6-B2a). We project students from
different groups using t-SNE for clustering, highlighting students
with similar performance. The three flowers representing the search
group are connected with dashed lines to clarify group member dis-
tribution and similarity, helping users assess group homogeneity or
heterogeneity. Only the comparing group’s flowers are highlighted
to minimize visual clutter. Users can zoom in/out to explore specific
students and view detailed background information (e.g., major,
grades) by hovering over individual points (Fig. 6-B2c).

5.4.3 Group Pattern Panel (Fig. 6-B2b & d). We use Epistemic Net-
work Analysis (ENA) [78] to analyze the dynamic connections
between cognitive elements and the collaborative problem-solving
behaviors of groups (R3). In the Group Pattern Panel, each node
represents a behavior in the collaborative problem-solving pro-
cess, with colors following the coding scheme in Section 1. Node
size indicates behavior frequency, and the intensity of the color
reflects the frequency of interactions between behaviors. More sig-
nificantly, darker nodes represent more frequent behaviors and
interactions. Users can click on different question buttons to ex-
amine dynamic changes in behavior across specific questions or
select multiple questions to observe how behaviors evolve during
transitions between tasks. Hovering over nodes reveals detailed
information about each behavior. When comparing two groups, the
system displays side-by-side behavior networks. The Group Pattern
Panel displays the search group’s behavior patterns and compares
them to those of the comparison group during the collaborative
problem-solving process (Fig. 6-B1b).

5.4.4 Timeline Panel. Users can toggle between the search and
comparing groups using the control button in the upper left corner
of the Timeline Panel (R5). This panel displays group and indi-
vidual student performance over time using a filterable bar chart
and line chart (Fig. 3-B3). In the bar chart, each bar represents a
timestamp, with colors indicating different collaborative problem-
solving behaviors. The bar height reflects uncertainty, as calculated
by ChatGPT-4o. Dashed lines separate different questions for visual
clarity. Hovering over a bar reveals the behavior category, predicted
certainty, and reasoning behind the label (Fig. 3-B3e). Clicking on a
bar takes users to the relevant conversation content (Fig. 3-C2a).
The filtering function (Fig. 3-B3c) allows users to zoom in on spe-
cific periods, magnifying the bars for more detailed analysis. The
progress bar consolidates behaviors, minimizing visual clutter and
highlighting key shifts in temporal behavior in the overview, while
also allowing for detailed tracking of group dynamics (Fig. 9-c).

Three line charts track the behaviors and cognitive engagement
of three students in the group (Fig. 3-B3b). Engagement is calculated
at the midpoint and end of each question, and Savitzky–Golay
filtering smooths the curves to highlight dynamic changes and
trends across questions. Below the charts, role types are mapped
using equally sized rectangles at each timestamp. Users can zoom
in on the timeline with the progress bar for detailed analysis.

5.5 Detail View
In the Timeline Panel, users can link to specific conversation con-
tent to review group discussions (Fig. 3-C1) and individual student
conversations for each question (Fig. 3-C2). The playback feature
allows users to revisit the original video of collaborative program-
ming sessions, providing a more immersive classroom experience.
This feature validates analysis results, offers detailed references,
and supports the final step of our analysis workflow (R6).

6 EVALUATION
To comprehensively evaluate the effectiveness ofCPVis in analyzing
collaborative programming, we adopted a multi-faceted research
approach. First, we conducted a quantitative study to validate the

CPVis: Evidence-based Multimodal Learning Analytics for Evaluation in Collaborative Programming

Codes Student projection & Group pattern

Q1 Q2 Q3 Q4 Q5

Searching Group

Comparing Group

Searching Group

Comparing Group

Question planning

B2a B2b B2d

B2c
Major: Landscape Architecture

Prior Grade: 90

Escalation

Q1 Q2 Q3 Q4 Q5

Searching Group

Comparing Group

Searching Group

Comparing Group

Escalation

Question planning

Unrelated chat
among students

Unrelated chat
among students

Figure 6: The panel displayed in the Content View after selecting “Student Projection & Group Pattern” is shown (A screenshot
of the Group 10 & 18 view). On the left (B2a), the projection of all students highlights the searched and compared groups,
showing connections between students within the searched group. Hovering over a flower reveals the student’s background
information (B2c). On the right (B2b), group patterns for two groups across different questions are shown, with clickable
question buttons to explore changes in dynamic learning behavior.

accuracy of collaboration performance annotations generated by
LLMs. Next, we demonstrated two cases explored by computer
science professors to showcase how CPVis supported group evalua-
tions and provided personalized feedback to students. Finally, we
recruited 22 participants for a user study to assess the practicality
and user experience of CPVis. All study designs were approved by
our university’s IRB.

6.1 Quantitative Study
Using an LLM-driven approach for data annotation may raise trust
concerns [33]. To verify whether LLM performance impacts the
validity of CPVis results, we conducted a quantitative study to as-
sess the accuracy and reliability of this method by sampling 20% of
the dataset. Specifically, we analyzed the following areas: evaluat-
ing code quality, annotating collaborative programming behaviors,
identifying student roles, and recognizing teacher scaffolding.

Inspired by CFlow [76], we recruited two experienced collabora-
tive programming instructors (I1-I2) to annotate the data in four
aspects. For instance, in the code quality evaluation, we asked the
instructors to grade based on the same criteria used by ChatGPT-4o,
with a score ranging from 1 to 5 for each dimension. Detailed scoring
criteria can be found in Sec. 4.3.2. First, I1 reviewed ChatGPT-4o’s
annotations and updated their original labels if necessary. I2 was
then tasked with comparing I1’s revised results (Version 1) and
ChatGPT-4o’s results (Version 2) without knowing the source of
either label set. I2 had to select one of the following four options: (1)
I agree with Version 1, (2) I agree with Version 2, (3) Both versions
seem valid, or (4) Neither version seems valid. We evaluated LLMs’
performance in code quality by comparing it to human-labeled re-
sults. The results showed that I1 and I2 reached 93.43% agreement,
while ChatGPT-4o ’s annotations matched I1 and I2’s annotations
with 85.62% and 89.32% consistency, respectively. Therefore, we con-
cluded that ChatGPT-4o’s annotations were reliable, and we trusted
its results. Additionally, we employed the same method to assess
three other dimensions. Among these, ChatGPT-4o’s accuracy was

relatively lower in classifying collaborative programming behav-
iors (90.32%) and code quality (93.43%) but higher in identifying
student roles (96.54%) and teacher scaffolding (97.42%). To mitigate
the impact of annotation errors, we added prediction percentage
and explanations to ChatGPT-4o’s annotations of collaborative
programming behaviors (Fig. 3-B3e), indicating the uncertainty of
classification. Similarly, we added explanations for code quality
(Fig. 3-B1), providing more evidence for instructors during analysis.

6.2 Case Study
We re-invited four computer science professors (P1-P4) from three
universities who teach relevant courses and have extensive exper-
tise in collaborative programming and data visualization to evaluate
CPVis and explore a real-world dataset using the system. We be-
gan by introducing the system’s background, visual design, and
workflow demonstration. Through two case studies based on the
professors’ interactions with CPVis, we showcased the system’s
effectiveness in evaluating group performance and providing per-
sonalized feedback to students.

6.2.1 Case 1: Assessing Similar Groups’ Performance. The case sum-
marized from P1 and P3 focused on the evaluation of group perfor-
mance in collaborative programming and the feedback provided.
They began by examining the filter view, where two closely posi-
tioned triangles with darker colors and larger outer arcs caught
their attention (Fig. 3-A1b). Interested in comparing the two groups,
they used the lasso tool to select them for further analysis. The
bouquet visualization revealed that Group 10 had one more but-
terfly than Group 18 (Fig. 3-A2), indicating stronger collaborative
problem-solving skills. Group 10’s petals were more complete, and
its leaves were greener, suggesting higher student engagement
and a greater level of teacher scaffolding. Next, they searched for
Group 10 (Fig. 3-A1a) and noticed that Group 18 was identified
as the most similar group in the similarity panel (Fig. 3-A3). They
selected Group 18 for comparison. In the code panel (Fig. 3-B1),
they observed differences in the solutions for Q1 and Q5, while the

Zhang et al.

Q1 Q2 Q3 Q4 Q5Q1 Q2 Q3 Q4 Q5

Searching Group

Comparing Group

Searching Group

Comparing Group

Searching Group Searching Group

Python coding

Python coding

Debugging

Figure 7: A screenshot of the “Group Pattern” view for Group 10 and Group 18, with the left side showing Group 10’s behavioral
pattern in Q1 and the right side displaying the results after adding the comparison group 18. In comparison, it is evident that
Group 10’s “Python coding” behavior decreased, while Group 18’s “Debugging” behavior increased, indicating more in-depth
programming discussions in Group 18 during Q1.

rest of the questions were identical. Coding analysis highlighted
that Group 18 failed to output List A as required in Q1, result-
ing in a lower score. For Q5, Group 18 used the ‘eval()’ function,
while Group 10 correctly used ‘int()’ for type conversion, avoid-
ing potential security risks and scoring higher (Fig. 3-B1). While
exploring the behavior pattern view (Fig. 6-B2b), they observed a
yellow node in Group 18 gradually enlarging, representing “Ques-
tion Planning” (Fig. 6-B2d). Curious, they switched to the timeline
panel and filtered for the discussion periods corresponding to Q4
and Q5 (Fig. 9-c&f). Through the timeline, they discovered that
during a specific period in Q4, all participants in Group 18 were
assigned the “Monitor” role, indicated by blue bars (Fig. 9-a). By
clicking on the bar, they found that the instructor had intervened,
offering medium-control cognitive scaffolding to guide students in
adjusting their code and encouraging persistence (Fig. 9-b). For
Q5, the instructor’s involvement was shorter (Fig. 9-e), providing
metacognitive scaffolding to encourage the group to try alternative
approaches (Fig. 9-d), such as using ‘eval()’. Ultimately, Group 18
followed the instructor’s advice and experimented with ‘eval()’.
Through the timeline panel (Fig. 3-B3d), they found that the in-
structor provided high control cognitive scaffolding (Fig. 3-B3e) for
Q1 and Q4 of the group 10 and explained the detailed solutions
(Fig. 3-C2a). Finally, they validated these observations by review-
ing classroom recordings. They concluded that although Group 10
submitted higher-quality code, it benefited from greater instruc-
tional support. Therefore, Group 18 demonstrated better overall
performance, considering its lower reliance on teacher scaffolding.

6.2.2 Case 2: Providing Personalized Feedback for Students. The
case summarized from the exploration process of P2 and P4 fo-
cused on providing personalized feedback, with our system helping
identify both disengaged students and highly engaged ones who
need further support. Using the lasso tool in the filter view (Fig.8-a),

the professors identified flowers missing petals and with smaller
stamens (Fig.8-b). Group 6’s particularly small petals prompted
further exploration. In the code panel, they noticed Group 6 consis-
tently received scores above 4 (Fig.8-d), indicating strong perfor-
mance. However, in the timeline panel, they saw that the students’
roles—Monitor (0601), Navigator (0602), and Driver (0603)—were
independent with minimal collaboration (Fig. 8-f). They also ob-
served incomplete engagement data, with three missing questions.
After reviewing the video, the professors confirmed the lack of
collaboration and suggested encouraging more active engagement
and collaboration among all members.

They noticed that Group 10 was the most different from Group 6
in the similarity panel (Fig. 8-c). By selecting Group 10 in the filter
panel, they observed that Group 10 had three butterflies (Fig. 3-
A2), indicating a high level of collaborative problem-solving skills.
Within the group, student 1002 stood out, with their flower being
orange and having larger stamens, suggesting high levels of both be-
havioral and cognitive engagement. In the student projection panel,
it was revealed that 1002 had a prior score of 90 (Fig. 6-B2a). On the
timeline panel, 1002’s curve was significantly higher than those of
the other group members, confirming a high level of engagement.
This student primarily assumed the role of Driver and frequently
switched roles during discussions. By exploring the timeline view,
it was found that in Q5, 1002 repeatedly sought help from the in-
structor while other group members were discussing. Finally, the
instructor provided high-control cognitive scaffolding (Fig. 3-B3d)
to explain in detail how to solve the problem and pointed out a syn-
tax error made by the group. Through their analysis, the professors
discovered that although 1002 was actively engaged, they tended
to rely excessively on the instructor during group discussions. The
professors recommended that 1002 focus on developing indepen-
dent thinking skills by first consulting resources or discussing with

CPVis: Evidence-based Multimodal Learning Analytics for Evaluation in Collaborative Programming

0601

0602

0603

Most DifferentMost Similar

Group 13 Group 10

Major: Agronomy

Prior Grade: 60

Major: Environmental Science

Prior Grade: 75

Major: Biotechnology

Prior Grade: 50

Group 6

Score: 4.35 /
 Problem-solving Approach (5%

 Score: Excellent (5
 Explanation: The code demonstrates an efficient and

straightforward problem-solving approach, effectively
addressing the key requirements of the task

 Code Integrity (35%
 Score: Good (4
 Explanation: The code is well-structured and organized,

making use of functional elements like list comprehension,
but there's a small indentation issue that could be improved

Group 6 Q1 Q2 Q3 Q4 Q54.21a e

b

c

d

f

Figure 8: A screenshot of Group 6: (a) the Filter View, (b) the Group 6’s bouquets, (c) the similarity panel, (d) the codes panel, (e)
the student projection panel, and (f) the timeline panel.

group members when facing challenges rather than immediately
seeking instructor assistance.

6.3 User Study
User Study focused on three core objectives: G1, to assess CPVis’s
performance in collaborative group evaluation tasks; G2, to validate
the effectiveness of CPVis in delivering personalized feedback to
students; and G3, to evaluate the overall user experience of CPVis.

6.3.1 Participants. We re-recruited 10 instructors and 12 teach-
ing assistants (TAs) from the Computer Science department to
participate in this user study (P1-P22, age: 28.95 ± 5.21). Among
the instructors, 2 were professors, and 8 were assistant professors,
with 6 male and 4 female participants. On average, the instruc-
tors had 4.6 years of experience teaching programming courses,
while the TAs had an average of 1.5 years of experience assisting
with programming courses. All participants had experience teach-
ing or co-teaching programming courses and were familiar with
collaborative programming education. Given the study’s focus on
collaborative programming environments, we only recruited par-
ticipants with a computer science background to ensure they could
provide authentic and interpretable insights for our research. All
sessions were conducted online via Zoom, and each participant
received a $20 reward at the end of the study.

6.3.2 Study Design and Procedure. We conducted a within-subjects
user study comparing the full version of CPVis with two baseline
systems.

Baseline System 1: In real-world classroom settings, instruc-
tors typically evaluate students and groups based on raw data. To
simulate traditional post-class evaluations, baseline system 1 pro-
vided only raw data, including students’ background information
(such as major and past grades), group-submitted code, and group
discussion videos. The design of Baseline System 1 aimed to assess
whether visualizing collaborative programming data could improve
the efficiency and accuracy of instructors’ evaluations of student
and group performance.

Baseline System 2: Since no systems were available for multi-
level assessment of collaborative programming in real classrooms,
we selected the full CPVis system for an ablation study. Baseline
System 2 retained the same learning analytics features and visual
design as CPVis but excluded the comparison feature. The design
of Baseline System 2 aimed to assess whether adding more panels
introduced additional complexity and whether the comparison fea-
ture in CPVis improved the efficiency of instructors’ assessments.

We randomly selected 10 groups from 19 as experimental datasets
for each system, ensuring that the data for each system was entirely
distinct. Participants were also randomly assigned to experiment

Zhang et al.

Group 10 Group 18

1801

1802

1803

Question Discussion Shared Mental Model Collaborative Programming Situation Awareness Teacher Scaffold

Behavior: High-control cognitive

scaffolding

Percentage: 100%

Explanation: Instructor provides

detailed explanation and coding

instructions.

1 5

P
re

di
ct

io
n

P
er

ce
nt

ag
e

(%
)

0%

20%

40%

60%

80%

100%

Behavior: Medium-control cogni

tive scaffolding

Percentage: 90%

Explanation: Explanins the differ

ence in execution between if and

while loops.

Behavior: Metacognitive scaffol

ding

Percentage: 85%

Explanation: Suggesting stufents

to try other methods.

a e

c

d

f

b

Figure 9: A screenshot of Group 18: (a) & (e) show all three students acting as monitors while the instructor is speaking. (b) & (d)
indicate that the current bar represents the instructor’s scaffolding provided, with a tooltip added. (c) & (f) show that Q4-Q5
were selected on the progress bar.

with all three systems, ensuring fairness and randomness in the
study. The actual experiment consisted of three phases:

Introduction: First, we introduced participants to the primary
objectives of the system and the research background through a
video. After obtaining their informed consent and collecting their
personal information, we provided a detailed explanation of the key
concepts and metaphors involved in the experiment to ensure par-
ticipants could understand and effectively utilize these metaphors
in the following phases. By administering a basic metaphor compre-
hension questionnaire (see supplementary materials), we confirmed
that participants had fully grasped the necessary metaphors. The
entire introduction phase lasted approximately 20 minutes.

Exploration: In this phase, participants were asked to explore
three systems, perform assigned tasks, and explore freely or based
on their own needs. Each participant was required to use three
systems to complete two tasks. The first task involved rating the
collaborative groups in the dataset (2 as excellent, 2 as good, 2 as
fair, 2 as pass, and 2 as fail). The second task was to identify students
who needed personalized feedback. To prevent the task completion
time from being influenced by the order, we shuffled the group IDs
in each system to balance the difficulty across the two systems,
ensuring fairness in the experimental results.

Feedback: Based on the participants’ experience with the sys-
tem, they were asked to complete a user experience questionnaire,
which included 7-point Likert scale questions derived from existing
literature [55, 69], as shown in Fig. 10. Additionally, we conducted
follow-up interviews to gather more feedback and insights about
our system and its potential real-world applications. These inter-
views lasted approximately 15 minutes.

Hypotheses: We propose the following hypotheses based on
Peerlens [69]:

H0: Both the full and ablated versions of CPVis outperform Base-
line System 1 in terms of information access and analysis. Specifi-
cally, CPVis shows advantages in accessibility (H0a), data richness
(H0b), sufficiency (H0c), and detailed (H0d) compared to Baseline
System 1.

H1: Both the full and ablated versions of CPVis outperform Base-
line System 1 in terms of user experience and decision support.
Specifically, CPVis excels in coherence (H1a), decisiveness (H1b),
and usefulness (H1c) over Baseline System 1.

H2: Both the full and ablated versions of CPVis surpass Baseline
System 1 in terms of ease of use and recommendability. Specifically,
CPVis excels in learnability (H2a), usability (H2b), and recommend-
ability (H2c) compared to Baseline System 1.

CPVis: Evidence-based Multimodal Learning Analytics for Evaluation in Collaborative Programming

H3: The full version of CPVis provides more information than
the ablated version. Specifically, the full version outperforms the ab-
lated version in accessibility (H3a), data richness (H3b), information
sufficiency (H3c), and detailed (H3d).

H4: The full version of CPVis outperforms the ablated version in
user experience and decision support. Specifically, the full version
excels in coherence (H4a), decisiveness (H4b), and usefulness (H4c).

H5: The ablated version of CPVis is superior to the full version.
Specifically, the ablated version is perceived asmore learnable (H5a),
more usable (H5b), and more recommendable (H5c) compared to
the full version.

6.4 Result and Analysis
We reported the evaluation results based on two completed tasks
and the overall system experience. A repeated measures analysis of
variance (RM-ANOVA) was conducted for each questionnaire item,
followed by Bonferroni post-hoc tests for measures with significant
differences. The results showed favorable performance and positive
feedback on G1, G2, and G3. The ratings are shown in Fig. 10.

G1, to assess CPVis’s performance in collaborative group
evaluation tasks. Participants completed the task of evaluating
collaborative groups but varying evaluating standards made it chal-
lenging to quantify the accuracy of their evaluations. To understand
their criteria, we asked, “What criteria did you use to rate these
groups?” In Baseline 1, participants evaluated factors such as code
errors, meeting the question requirements, code quality, time com-
plexity, readability, and the use of provided methods. In Baseline 2,
more learning analytics and visualization allowed participants to
expand their evaluation criteria. They focused on ChatGPT’s code
assessment, student engagement, quality of collaborative problem-
solving, student roles, and teacher scaffolding, as represented in
the flower-based visualization. P5 mentioned that, due to similar
group answers, assessing accuracy from code alone was challenging.
However, the flower-based visualization helped reveal both group and
individual performance. In CPVis, the introduction of comparison
panels further expanded the evaluating criteria. P13 noted that the
behavior pattern view in the comparison panel played a crucial role in
their evaluations, as it allowed them to analyze behavior patterns over
time for two groups within the same interface. This was particularly
useful for comparing highly similar groups.

Regarding time spent on the task, we found that although Base-
line 1 provided a large amount of data, it was relatively raw. Partic-
ipants typically lacked the patience to examine all the details and
relied more on code scoring, spending an average of 20 minutes.
In contrast, participants using Baseline 2 and CPVis systems spent
more time, averaging 35 minutes and 30 minutes, respectively. We
believe this was due to the richer learning analytics provided in
these versions, which engaged participants more deeply in explor-
ing collaborative programming details.

G2, to assess the effectiveness of CPVis in providing person-
alized feedback to students.Wegained valuable insights by asking
participants, “Which two students do you think need feedback the
most, and why?” In Baseline 1, since the code was submitted as a
group, participants found it challenging to assess individual per-
formance, making it difficult to provide personalized feedback. In

Baseline 2, participants quickly identified students needing feed-
back, focusing on outliers with low engagement or imbalanced
roles. Feedback typically encouraged more active engagement in
discussions and collaboration. In CPVis, participants highlighted
students with “contradictory” traits. P8 pointed out a student with a
poor academic record who displayed high behavioral engagement in
the current group programming project, clearly trying to keep up with
the group. Conversely, P9 identified a student with a strong academic
record who showed low engagement and remained mostly silent dur-
ing discussions. We believe that CPVis’s visualization capabilities
not only help participants quickly identify students with unusual
performance but also allow them to recognize students who may
require additional attention or support.

G3, to assess the overall user experience of CPVis. Figure 10
presented the questionnaire results. Overall, the ablated and full
versions of CPVis scored significantly higher than Baseline1 across
all evaluation metrics, with statistically significant differences. All
metric scores of the full version of CPVis were higher than those of
the ablated version (Baseline 2). Compared to the ablated version,
the full version of CPVis introduced comparison features, result-
ing in more panels. However, the results showed that, except for
Richness, Sufficiency, Detailed, and Learnability, all other metrics
exhibited statistically significant differences. Thus, hypotheses H3b,
H3c, H3d, H5b, and H5c were not supported, while H3a, H4a, H4b,
H4c, and H5a were supported. It indicated that the full version of
CPVis added valuable features without introducing unnecessary
complexity. Although no significant differences were observed in
the Learnability metric, both the full and ablated versions were
easy to learn and effectively enhanced the instructor’s assessment
efficiency. P10 stated, “The group behavior pattern analysis in the
full version helped me a lot. Comparing the two groups made it eas-
ier to see which group had more in-depth collaboration. In contrast,
directly comparing two node connection diagrams would have been
much harder.” Additionally, participants consistently recognized
the value of learning analytics during follow-up interviews. CPVis
provided multi-level learning analysis from groups to individual
students. While the ablated version reduced some comparison fea-
tures, it did not remove any analytical dimensions, which explained
the lack of significant differences in Richness, Sufficiency, and De-
tailed. On average, participants still gave higher ratings to CPVis.
Participants provided separate ratings for these designs in Q7 and
Q8, with scores ranging from 5 to 7. For the Visual Encoding ques-
tion (𝑀 = 6.63, 𝑆𝐷 = 0.58) , most participants found the flower
metaphor intuitive and thought the visual design was highly inno-
vative. P14 remarked that she felt a sense of familiarity with the
flower design, stating that using flowers to represent students was
easy to understand and accept, with a reasonable encoding method.
For the Visual Design (𝑀 = 6.32, 𝑆𝐷 = 0.78) , participants noted
that by observing the design of flowers or bouquets, they could
quickly and intuitively understand the overall situation of groups
and students, which facilitated further exploration of details.

7 DISCUSSION

Zhang et al.

p<0.05* p<0.01** p<0.001*** Baseline1 Baseline2 CPVis

Question Means and Standard Deviation Results F η2 df Sig.

77.20 2.00 42.00 0.00

The baseline system 1 (M = 2.82, SD = 0.95)

The full version (M = 6.31, SD = 0.65)

The ablated version (M = 5.27, SD = 1.12)

H0a supported, H3a supported

The ease of accessing data on
groups/individual students for
analysis.

Q1: Accessibility

112.35 2.00 42.00 0.00

The baseline system 1 (M = 2.32, SD = 1.13)

The full version (M = 6.63, SD = 0.90)

the ablated version (M = 5.77, SD = 1.10)

H0b supported, H3b rejected

The richness of data available
on groups/individual students.
			

Q2: Richness

122.76 2.00 42.00 0.00

The baseline system 1 (M = 2.50, SD = 1.06)

The full version (M = 6.41, SD = 0.73)

the ablated version (M = 5.72, SD = 0.93)

H0c supported, H3c rejected

The information provided is
sufficient to evaluate groups
and individuals.

Q3: Sufficiency

80.39 2.00 42.00 0.00

The baseline system 1 (M = 2.59, SD = 1.14)

The full version (M = 6.36, SD = 0.79)

The ablated version (M = 5.36, SD = 1.17)

H0d supported, H3d rejected

The system helps me
understand the programming
details within student groups.

Q4: Detailed

133.00 2.00 42.00 0.00

The full version (M = 6.45, SD = 0.67)

The ablated version (M = 5.36, SD = 1.09)

The baseline system 1 (M = 2.00, SD = 1.15)

 H1a supported, H4a supported

The system makes you feel
immersed in a real collaborative
classroom rather than offering a
fragmented experience.

Q5: Coherence

44.54 2.00 42.00 0.00

The full version (M = 6.18, SD = 0.91)

The ablated version (M = 4.81, SD = 1.00)

The baseline system 1 (M = 3.14, SD = 1.25)

H1b supported, H4b supported

The system gives me
confidence in my ranking
decisions.

Q6: Decisiveness

69.80 2.00 42.00 0.00

The full version (M = 6.54, SD = 0.68)

The ablated version (M = 5.36, SD = 1.25)

The baseline system 1 (M = 3.18, SD = 1.33)

H1c supported, H4c supported

The system helps me in
evaluating groups.

Q9: Usefulness

29.73 2.00 42.00 0.00

The full version (M = 6.91, SD = 1.02)

The ablated version (M = 5.18, SD = 1.18)

The baseline system 1 (M = 3.45, SD = 1.01)

H2a supported, H5a supported

The system is easy to learn.

Q10: Learnability

52.13 2.00 42.00 0.00

The full version (M = 6.05, SD = 0.84)

The ablated version (M = 5.04, SD = 0.89)

The baseline system 1 (M = 3.23, SD = 1.31)

H2b supported, H5b rejected

The system is easy to use.

Q11: Usability

76.67 2.00 42.00 0.00

The full version (M = 6.50, SD = 0.67)

The ablated version (M = 5.31, SD = 1.21)

The baseline system 1 (M = 2.95, SD = 1.74)

H2c supported, H5c rejected

I would recommend this system
to other educators.

Q12: Recommendability

Figure 10: Results of the RM-ANOVA for the Baseline 1, Baseline 2, and full version CPVis questionnaires, based on a 7-point
Likert scale (1 means disagree, 7 means agree), including the Mean (M) and Standard Deviation (SD).

CPVis: Evidence-based Multimodal Learning Analytics for Evaluation in Collaborative Programming

Our study utilizes an intuitive flower-based visual design and evidence-
based collaborative programming process analysis to provide in-
structors with a clear perspective for evaluating group and individ-
ual performance in collaborative programming. In this section, we
discuss the lessons learned, the factors contributing to the research
outcomes, and how these findings relate to existing works.

7.1 Flower-Based Visual Design for Intuitive
and Useful by Participants

In large-scale learning analytics, intuitive visualization and interac-
tive features prove to be valuable in assisting instructors with eval-
uations while reducing their workload [16, 39]. Our study shows
that the flower-based visual design effectively helps instructors
summarize the performance of students and groups in collaborative
programming. Participants using CPVis typically report starting
by observing the flower visualization to gain an overview of the
group’s overall performance and the engagement levels of individ-
ual members during collaboration. Our design enables them tomake
quick assessment judgments and uncover valuable educational in-
sights. For instance, students playing the Driver role often exhibit
higher engagement levels. Previous works use dynamic natural
metaphors [62, 63], such as blooming flowers, falling leaves, and
weather changes, to represent the quality and state of group discus-
sions. However, these metaphors primarily convey overall trends
or atmospheres rather than offering a precise and structured rep-
resentation of multidimensional data, making it difficult for users
to extract specific and accurate information efficiently. Moreover,
the strong symbolic and emotional nature of their metaphors often
leads to subjective interpretations. The effectiveness of our design
lies in its ability to translate multiple dimensions of process-based
learning analytics into visual elements such as colored petals and
flower stamens, enabling instructors to quickly interpret multidi-
mensional data and assess both group and individual performance
during collaboration. Furthermore, the flower-based visualization
supports hierarchical analysis at both the group and individual
levels, allowing instructors to efficiently analyze and compare the
performance of multiple groups and students on a large scale.

7.2 CPVis Enhanced Instructors’ Confidence in
Evaluating Groups and Students

The study demonstrates that CPVis enhances participants’ confi-
dence in evaluation outcomes and improves the accuracy of their
assessments. In Baseline System 1, participants report that accessing
data requires significant time, and evaluating a specific group’s per-
formance often necessitates finding similar groups for a relatively
fair comparison. Such a process demands additional time, causing
participants to lose patience and avoid thoroughly examining all
the details. In baseline system 2, participants have to manually
browse and process large amounts of student behavior and interac-
tion data, which significantly increases cognitive load and reduces
efficiency as they rely on memory to evaluate the performance
of different groups. In comparison, CPVis offers significant con-
venience to participants by visualizing multidimensional learning
analytics data, allowing them to effortlessly access key information
required for evaluations and compare similar groups. By providing
both an overall view of multiple groups and detailed comparisons

into individual groups, CPVis substantially boosts participants’ con-
fidence in their evaluation outcomes, as demonstrated in the ratings.
Clear and intuitive visual analytics systems contribute to improved
confidence and efficiency among participants. For instance, Group-
namics helps participants identify groups requiring intervention
by visualizing each group’s recent vocal activities and discussion
statuses in a one-page view, thereby boosting their confidence in
decision-making [52]. While it is ideal for CPVis to support compar-
isons across an unlimited number of groups, practical limitations
related to cognitive load and visual design make this challenging.
Future efforts focus on optimizing the evaluation process through
visual design, striking a balance between cognitive load and evalu-
ation efficiency, thereby providing effective support for teaching.

7.3 Theory-driven and LLM-powered
Automation Evaluation for Quantifying
Collaborative Learning

Our study utilizes data collection, analysis, and visualization tech-
niques to extract key insights from students’ collaborative behaviors
and outcomes, providing a deeper understanding of the learning
process in collaborative programming. We focus on quantifying
complex collaborative learning processes by leveraging LLMs and
theoretical frameworks, introducing innovative methods to evalu-
ate collaboration efficiency. While collaborative problem-solving
is clearly defined in prior research [50], achieving a quantitative
balance between task performance and team effectiveness remains
a significant challenge. To address this, we employ the coefficient
of variation as a balancing metric and validate its efficacy using
real-world datasets. By integrating LLMs, CPVis automates the an-
notation of collaborative programming performance, significantly
reducing the workload associated with manually labeling large-
scale classroom data and offering a novel perspective for auto-
mated learning analytics. Combining theory-driven metrics and
LLM-powered automation provides instructors with robust, mul-
tidimensional evidence, enabling them to process and compare
extensive student data systematically. This empowers instructors
to effectively evaluate group and individual behaviors in collabo-
rative programming, identify collaboration patterns, and support
evidence-based decision-making. Previous research demonstrates
that data-driven analysis helps educational decision-makers [28],
such as instructors, uncover hidden learning patterns and deliver
personalized guidance. Building on this foundation, CPVis further
enhances the potential for personalized feedback, enabling instruc-
tors to provide precise, data-driven guidance to students.

8 LIMITATIONS AND FUTUREWORK
In this section, we discuss the limitations of the current study and
potential future work.

8.1 Limitation
Our study has three main limitations. First, our current analysis is
limited to data from a single real-world classroom’s collaborative
programming discussions, restricting the generalizability of our
findings to other contexts. Similarly, our evaluation of CPVis relies
on a sampled dataset, limiting the study’s scope. We hypothesize

Zhang et al.

that participants workingwith smaller datasets and visualized learn-
ing analytics experience reduced cognitive load and find it easier
to identify collaboration patterns due to fewer visual elements to
process. However, in large-scale collaborative programming class-
rooms, instructors face the challenge of evaluating more groups
and students, which may increase memory load and visual com-
plexity. Second, the data collected in our study are obtained from
real classroom environments, maintaining ecological validity by
capturing natural behaviors such as group silence or requests for in-
structor assistance. However, due to the limitations of non-intrusive
equipment, our data lack details such as facial expressions and non-
verbal cues. While participants report the comprehensiveness and
richness of the learning analytics in the experiment, the absence of
these data poses challenges for deeper analysis of emotional expres-
sions and social engagement during collaborative programming.
This limitation hinders the provision of a more holistic learning
analysis for evaluation purposes. Additionally, the recorded data
are independent and exclude audio information, making it difficult
to align screen interactions with dialogue streams. This limitation
constrains the exploration of the relationship between collabora-
tive behavior patterns and collaborative problem-solving processes.
Finally, in large-scale collaborative programming classrooms, gen-
erating analytics using LLMs requires significant computational
time and cost. While feasible for institutions with robust compu-
tational resources, this remains a limitation for deploying such
tools in real teaching scenarios. Furthermore, in real classrooms,
noise from multiple group discussions introduces significant data
noise, complicating the automation of learning analytics generation
and limiting the accuracy of evaluations for groups and individual
students.

8.2 Future Work
Without well-structured visualizations, simply presenting multiple
data streams poses significant challenges for instructors attempt-
ing to interpret these large-scale datasets [16]. In this study, we
explore the integration and analysis of multimodal data. However,
CPVis has the potential to further enhance the visualization and
perception of multimodal data, enabling instructors to evaluate
group and student performance with greater accuracy and reduced
cognitive load [39]. Our target audience consists of instructors
teaching large introductory collaborative programming courses,
who require more efficient and intuitive visualizations to under-
stand student performance during collaboration. While our use of
static 2D visualizations, such as high-dimensional flower glyphs,
has been highly regarded by participants for boosting confidence
and helping instructors quickly identify key features, we believe
there is room for improvement in organizing visualization formats
to enhance information transmission efficiency and the users cogni-
tive experience. For instance, incorporating narrative visualizations
further streamlines the process by allowing instructors to generate
composite evaluations based on their weighting of different col-
laboration performance dimensions [21]. Narrative visualizations
enable instructors to delve into data details, organize learning an-
alytics results along logical paths such as timelines, causality, or
categories, and highlight key information [10]. This approach miti-
gates visual overload caused by excessive data, significantly reduces

the time and cognitive effort required for evaluation, and ultimately
supports instructors in making better decisions and assessments.

CPVis requires instructors to spend additional time after class
to evaluate collaborative performance. In our study, most partic-
ipants indicate during follow-up interviews that the extra time
spent on evaluating students’ collaborative performance is highly
valuable for producing comprehensive assessments. They note that
providing immediate evaluations during the collaboration process
is unrealistic, as final assessments typically need a holistic consider-
ation of task completion and group dynamics after class. However,
there is a significant demand for real-time analysis tools to deliver
timely, personalized feedback to students and offer appropriate
instructional scaffolding during the collaborative process [60]. In-
structors frequently find themselves overwhelmed by the immedi-
ate needs of some students [73], unintentionally neglecting others.
To address this issue, future work could explore the integration
of LLMs to enable real-time monitoring and analysis of students’
behavioral data—such as code submissions, error logs, and engage-
ment levels. LLMs could automatically detect learning bottlenecks
or collaboration issues, providing instant feedback on common
problems to students. This would effectively reduce instructors’
workload, allowing them to focus on complex or critical issues, and
simplify classroom management tasks. For instance, LLMs could
summarize patterns in students’ code submissions and generate a
“hotspot report” identifying recurring issues across the class. They
could also provide real-time collaborative performance analytics
for different groups, enabling instructors to quickly gain a com-
prehensive understanding of overall class dynamics. Additionally,
LLMs could assist in role allocation within groups, suggest strate-
gies to improve team interactions, and identify potential conflicts
or disengagement within collaborative teams. LLM-powered tools
automate evaluations and enable personalized feedback, bridging
post-class assessments with in-class scaffolding to enhance teaching
and learning in collaborative programming.

9 CONCLUSION
Collaborative programming has been a common teaching strategy
for instructors in large-scale programming courses. We collected
multimodal collaborative programming data from real-world set-
tings and, after consulting with domain experts, developed a per-
formance framework for evaluating collaborative programming
groups and individual students. We visualized these performance
metrics by introducing a novel flower metaphor-based design and
built an interactive visualization system to dynamically analyze
group collaboration behavior and track students’ evolving engage-
ment over time. Finally, we conducted a quantitative study to eval-
uate the accuracy of annotation data labeling by LLMs, with two
cases demonstrating how our system helped instructors evaluate
group performance and provide personalized feedback to students.
Additionally, we organized a within-subjects experiment (N=22)
comparing CPVis with two baseline systems. The results indicated
that participants gained more insights using our system and felt
significantly more confident in evaluating group collaboration.

CPVis: Evidence-based Multimodal Learning Analytics for Evaluation in Collaborative Programming

ACKNOWLEDGMENTS
Meng Xia is the corresponding author. The work was supported
by the National Natural Science Foundation of China, (62422607,
62372411, 62036009) and the Zhejiang Provincial Natural Science
Foundation of China.

REFERENCES
[1] Nalini Ambady and Robert Rosenthal. 1993. Half a Minute: Predicting Teacher

Evaluations from Thin Slices of Nonverbal Behavior and Physical Attractiveness.
Journal of personality and social psychology 64, 3 (1993), 431.

[2] Pengcheng An, Saskia Bakker, Sara Ordanovski, Ruurd Taconis, and Berry Eggen.
2018. ClassBeacons: Designing distributed visualization of teachers’ physical
proximity in the classroom. In Proceedings of the Twelfth International Conference
on Tangible, Embedded, and Embodied Interaction. 357–367.

[3] Pengcheng An, Saskia Bakker, Sara Ordanovski, Ruurd Taconis, Chris LE Paffen,
and Berry Eggen. 2019. Classbeacons: Enhancing reflection-in-action of teachers
through spatially distributed ambient information. In Extended Abstracts of the
2019 CHI Conference on Human Factors in Computing Systems. 1–4.

[4] Bon Adriel Aseniero, Marios Constantinides, Sagar Joglekar, Ke Zhou, and
Daniele Quercia. 2020. MeetCues: Supporting online meetings experience. In
Proceedings of IEEE Visualization Conference. IEEE, 236–240.

[5] Khaled Bachour, Frederic Kaplan, and Pierre Dillenbourg. 2010. An Interactive
Table for Supporting Participation Balance in Face-to-face Collaborative Learning.
IEEE Transactions on Learning Technologies 3, 3 (2010), 203–213.

[6] Thomas Breideband, Jeffrey Bush, Chelsea Chandler, Michael Chang, Rachel
Dickler, Peter Foltz, Ananya Ganesh, Rachel Lieber, William R Penuel, Jason G
Reitman, et al. 2023. The Community Builder (CoBi): Helping Students to Develop
Better Small Group Collaborative Learning Skills. In Proceedings of the Conference
on Computer Supported Cooperative Work and Social Computing. 376–380.

[7] Senthil Chandrasegaran, Chris Bryan, Hidekazu Shidara, Tung-Yen Chuang, and
Kwan-Liu Ma. 2019. TalkTraces: Real-time Capture and Visualization of Verbal
Content in Meetings. In Proceedings of the CHI conference on human factors in
computing systems. 1–14.

[8] Baofeng Chang, Guodao Sun, Tong Li, Houchao Huang, and Ronghua Liang.
2022. MUSE: Visual Analysis of Musical Semantic Sequence. IEEE Transactions
on Visualization and Computer Graphics 29, 9 (2022), 4015–4030.

[9] Pankaj Chejara, Reet Kasepalu, Luis Prieto, María Jesús Rodríguez-Triana, and
Adolfo Ruiz-Calleja. 2024. Bringing Collaborative Analytics using Multimodal
Data to Masses: Evaluation and Design Guidelines for Developing a MMLA
System for Research and Teaching Practices in CSCL. In Proceedings of the
Learning Analytics and Knowledge Conference. 800–806.

[10] Qing Chen, Zhen Li, Ting-Chuen Pong, and Huamin Qu. 2019. Designing narra-
tive slideshows for learning analytics. In 2019 IEEE pacific visualization sympo-
sium (PacificVis). IEEE, 237–246.

[11] Xinyue Chen, Shuo Li, Shipeng Liu, Robin Fowler, and XuWang. 2023. Meetscript:
Designing Transcript-based Interactions to Support Active Participation in Group
Video Meetings. Proceedings of the ACM on Human-Computer Interaction 7,
CSCW2 (2023), 1–32.

[12] Robert A DeLine. 2021. Glinda: Supporting Data Science with Live Programming,
GUIs and a Domain-specific Language. In Proceedings of the CHI Conference on
Human Factors in Computing Systems. 1–11.

[13] Nicholas Diana, Michael Eagle, John Stamper, Shuchi Grover, Marie Bienkowski,
and Satabdi Basu. 2017. An Instructor Dashboard for Real-time Analytics in In-
teractive Programming Assignments. In Proceedings of the International Learning
Analytics & Knowledge Conference. 272–279.

[14] Mennatallah El-Assady, Valentin Gold, Carmela Acevedo, Christopher Collins,
and Daniel Keim. 2016. ConToVi: Multi-party Conversation Exploration using
Topic-space Views. Computer Graphics Forum 35, 3 (2016), 431–440.

[15] Mennatallah El-Assady, Rita Sevastjanova, Bela Gipp, Daniel Keim, and Christo-
pher Collins. 2017. NEREx: Named-entity Relationship Exploration inMulti-party
Conversations. Computer Graphics Forum 36, 3 (2017), 213–225.

[16] Gloria Milena Fernandez-Nieto, Roberto Martinez-Maldonado, Vanessa Echev-
erria, Kirsty Kitto, Dragan Gašević, and Simon Buckingham Shum. 2024. Data
storytelling editor: A teacher-centred tool for customising learning analytics
dashboard narratives. In Proceedings of the 14th Learning Analytics and Knowledge
Conference. 678–689.

[17] Jennifer A Fredricks. 2022. The Measurement of Student Engagement: Methodolog-
ical Advances and Comparison of New Self-report Instruments. Springer, 597–616.

[18] Katsuya Fujii, Plivelic Marian, Dav Clark, Yoshi Okamoto, and Jun Rekimoto.
2018. Sync class: Visualization System for In-class Student Synchronization. In
Proceedings of the Augmented Human International Conference. 1–8.

[19] Matheus Gaudencio, Ayla Dantas, and Dalton DS Guerrero. 2014. Can Computers
Compare Student Code Solutions as well as Teachers?. In Proceedings of the ACM
technical symposium on Computer science education. 21–26.

[20] Elena L Glassman, Jeremy Scott, Rishabh Singh, Philip J Guo, and Robert C Miller.
2015. OverCode: Visualizing Variation in Student Solutions to Programming
Problems at Scale. ACM Transactions on Computer-Human Interaction 22, 2 (2015),
1–35.

[21] Samuel Gratzl, Alexander Lex, Nils Gehlenborg, Hanspeter Pfister, and Marc
Streit. 2013. Lineup: Visual analysis of multi-attribute rankings. IEEE transactions
on visualization and computer graphics 19, 12 (2013), 2277–2286.

[22] Philip J Guo. 2015. Codeopticon: Real-time, One-to-many Human Tutoring for
Computer Programming. In Proceedings of the Annual ACM Symposium on User
Interface Software & Technology. 599–608.

[23] Luke Haliburton, Natalia Bartłomiejczyk, Albrecht Schmidt, Paweł W Woźniak,
and Jasmin Niess. 2023. The Walking Talking Stick: Understanding Automated
Note-Taking inWalkingMeetings. In Proceedings of the CHI Conference on Human
Factors in Computing Systems. 1–16.

[24] Brian Hanks, Sue Fitzgerald, Renée McCauley, Laurie Murphy, and Carol Zander.
2011. Pair Programming in Education: A Literature Review. Computer Science
Education 21, 2 (2011), 135–173.

[25] Anja Hawlitschek, Sarah Berndt, and Sandra Schulz. 2023. Empirical Research on
Pair Programming in Higher Education: a Literature Review. Computer Science
Education 33, 3 (2023), 400–428.

[26] Arto Hellas, Juho Leinonen, Sami Sarsa, Charles Koutcheme, Lilja Kujanpää,
and Juha Sorva. 2023. Exploring the Responses of Large Language Models to
Beginner Programmers’ Help Requests. In Proceedings of the ACM Conference on
International Computing Education. 93–105.

[27] Ruikun Hou, Tim Fütterer, Babette Bühler, Efe Bozkir, Peter Gerjets, Ulrich
Trautwein, and Enkelejda Kasneci. 2024. Automated Assessment of Encourage-
ment and Warmth in Classrooms Leveraging Multimodal Emotional Features
and ChatGPT. In Proceedings of International Conference on Artificial Intelligence
in Education. Springer, 60–74.

[28] Xinying Hou, Zihan Wu, Xu Wang, and Barbara J Ericson. 2024. Codetailor:
Llm-powered Personalized Parsons Puzzles for Engaging Support while Learning
Programming. In Proceedings of the ACM Conference on Learning @ Scale. 51–62.

[29] Taemie Kim, Agnes Chang, Lindsey Holland, and Alex Sandy Pentland. 2008.
Meeting mediator: enhancing group collaborationusing sociometric feedback.
In Proceedings of the ACM conference on Computer supported cooperative work.
457–466.

[30] Daniel D. Lee and H. Sebastian Seung. 2000. Algorithms for Non-negative Matrix
Factorization. In Proceedings of the International Conference on Neural Information
Processing Systems. 535–541.

[31] Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein, Joanne
Kim, Andrew Tran, and Arto Hellas. 2023. Comparing Code Explanations Created
by Students and Large Language Models. In Proceedings of the Conference on
Innovation and Technology in Computer Science Education. 124–130.

[32] Colleen M Lewis. 2011. Is Pair Programming More Effective than Other Forms
of Collaboration for Young Students? Computer Science Education 21, 2 (2011),
105–134.

[33] Q Vera Liao and Jennifer Wortman Vaughan. 2023. Ai transparency in the age
of llms: A human-centered research roadmap. arXiv preprint arXiv:2306.01941
(2023), 5368–5393.

[34] Yingbo Ma, Mehmet Celepkolu, and Kristy Elizabeth Boyer. 2022. Detecting
Impasse during Collaborative Problem Solving withMultimodal Learning Analyt-
ics. In Proceedings of International Learning Analytics and Knowledge Conference.
45–55.

[35] Stephen MacNeil, Kyle Kiefer, Brian Thompson, Dev Takle, and Celine Latulipe.
2019. Ineqdetect: A visual analytics system to detect conversational inequal-
ity and support reflection during active learning. In Proceedings of the ACM
Conference on Global Computing Education. 85–91.

[36] Phil Maguire, Rebecca Maguire, Philip Hyland, and Patrick Marshall. 2014. En-
hancing Collaborative Learning using Pair Programming: Who Benefits? AISHE-
J: The All Ireland Journal of Teaching and Learning in Higher Education 6, 2
(2014).

[37] Katerina Mangaroska, Kshitij Sharma, Dragan Gašević, and Michail Giannakos.
2022. Exploring Students’ Cognitive and Affective States during Problem Solv-
ing through Multimodal Data: Lessons Learned from a Programming Activity.
Journal of Computer Assisted Learning 38, 1 (2022), 40–59.

[38] Herbert W Marsh and Lawrence A Roche. 1997. Making students’ evaluations
of teaching effectiveness effective: The critical issues of validity, bias, and utility.
American psychologist 52, 11 (1997), 1187.

[39] Roberto Martinez-Maldonado, Vanessa Echeverria, Gloria Fernandez Nieto, and
Simon Buckingham Shum. 2020. From data to insights: A layered storytelling ap-
proach for multimodal learning analytics. In Proceedings of the 2020 chi conference
on human factors in computing systems. 1–15.

[40] George Mathew, Chris Parnin, and Kathryn T Stolee. 2020. SLACC: Simion-
based Language Agnostic Code Clones. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering. 210–221.

[41] George Mathew and Kathryn T Stolee. 2021. Cross-language Code Search using
Static and Dynamic Analyses. In Proceedings of the ACM Joint Meeting on Eu-
ropean Software Engineering Conference and Symposium on the Foundations of

Zhang et al.

Software Engineering. 205–217.
[42] See-Kiong Ng and Marie Wong. 1999. Toward Routine Automatic Pathway

Discovery from On-line Scientific Text Abstracts. Genome Informatics 10 (1999),
104–112.

[43] Karin Niemantsverdriet and Thomas Erickson. 2017. Recurring Meetings: An
Experiential Account of Repeating Meetings in a Large Organization. Proceedings
of the ACM on Human-Computer Interaction 1, CSCW (2017), 1–17.

[44] Tesseract OCR. 2024. Tesseract OCR. https://github.com/tesseract-ocr/tesseract
Accessed: 2024-09-09.

[45] OpenAI. 2024. GPT-4o. https://openai.com/index/hello-gpt-4o/ Accessed:
2024-09-09.

[46] Fan Ouyang, Xinyu Dai, and Si Chen. 2022. Applying Multimodal Learning Ana-
lytics to Examine the Immediate and Delayed Effects of Instructor Scaffoldings
on Small Groups’ Collaborative Programming. International Journal of STEM
Education 9, 1 (2022), 45.

[47] Jungkook Park, YeongHoon Park, Jinhan Kim, Jeongmin Cha, Suin Kim, andAlice
Oh. 2018. Elicast: Embedding Interactive Exercises in Instructional Programming
Screencasts. In Proceedings of the Annual ACM Conference on Learning at Scale.
1–10.

[48] pyannote. 2024. Pyannote-audio. https://github.com/pyannote/pyannote-audio
Accessed: 2024-09-09.

[49] Tareq Rasul, Sumesh Nair, Diane Kalendra, Mulyadi Robin, Fernando de
Oliveira Santini, Wagner Junior Ladeira, Mingwei Sun, Ingrid Day, Raouf Ahmad
Rather, and Liz Heathcote. 2023. The Role of ChatGPT in Higher Education:
Benefits, challenges, and Future Research Directions. Journal of Applied Learning
and Teaching 6, 1 (2023), 41–56.

[50] Yigal Rosen, Kristin Stoeffler, Michael Yudelson, and Vanessa Simmering. 2020.
Towards Scalable Gamified Assessment in Support of Collaborative Problem-
solving Competency Development in Online and Blended Learning. In Proceed-
ings of the ACM Conference on Learning @ Scale. 369–372.

[51] Samiha Samrose, Daniel McDuff, Robert Sim, Jina Suh, Kael Rowan, Javier Her-
nandez, Sean Rintel, KevinMoynihan, andMary Czerwinski. 2021. Meetingcoach:
An Intelligent Dashboard for Supporting Effective & Inclusive Meetings. In Pro-
ceedings of the CHI Conference on Human Factors in Computing Systems. 1–13.

[52] Arissa J Sato, Zefan Sramek, and Koji Yatani. 2023. Groupnamics: Designing
an Interface for Overviewing and Managing Parallel Group Discussions in an
Online Classroom. In Proceedings of the CHI Conference on Human Factors in
Computing Systems. 1–18.

[53] Sandra Schulz, Sarah Berndt, and Anja Hawlitschek. 2023. Exploring Students’
and Lecturers’ Views on Collaboration and Cooperation in Computer Science
Courses-a Qualitative Analysis. Computer Science Education 33, 3 (2023), 318–341.

[54] Rita Sevastjanova, Mennatallah El-Assady, Adam Bradley, Christopher Collins,
Miriam Butt, and Daniel Keim. 2021. Visinreport: Complementing Visual Dis-
course Analytics through Personalized Insight Reports. IEEE Transactions on
Visualization and Computer Graphics 28, 12 (2021), 4757–4769.

[55] Yang Shi, Chris Bryan, Sridatt Bhamidipati, Ying Zhao, Yaoxue Zhang, and Kwan-
Liu Ma. 2018. Meetingvis: Visual Narratives to Assist in Recalling Meeting
Context and Content. IEEE Transactions on Visualization and Computer Graphics
24, 6 (2018), 1918–1929.

[56] Yang Shi, Yang Wang, Ye Qi, John Chen, Xiaoyao Xu, and Kwan-Liu Ma. 2017.
IdeaWall: Improving Creative Collaboration Through Combinatorial Visual Stim-
uli. In Proceedings of the ACM Conference on Computer Supported Cooperative
Work and Social Computing. 594–603.

[57] Seoyun Son, Junyoug Choi, Sunjae Lee, Jean Y Song, and Insik Shin. 2023. It is
Okay to be Distracted: How Real-time Transcriptions Facilitate Online Meeting
with Distraction. In Proceedings of the CHI Conference on Human Factors in
Computing Systems. 1–19.

[58] Dan Sun, Fan Ouyang, Yan Li, and Hongyu Chen. 2021. Three Contrasting Pairs’
Collaborative Programming Processes in China’s Secondary Education. Journal
of Educational Computing Research 59, 4 (2021), 740–762.

[59] SYSTRAN. 2024. Faster-Whisper. https://github.com/SYSTRAN/faster-whisper
Accessed: 2024-09-09.

[60] Xiaohang Tang, Sam Wong, Marcus Huynh, Zicheng He, Yalong Yang, and Yan
Chen. 2024. SPHERE: Scaling Personalized Feedback in Programming Classrooms
with Structured Review of LLM Outputs. arXiv preprint arXiv:2410.16513 (2024).

[61] Xiaohang Tang, SamWong, Kevin Pu, Xi Chen, Yalong Yang, and Yan Chen. 2024.
VizGroup: An AI-assisted Event-driven System for Collaborative Programming
Learning Analytics. In Proceedings of the 37th Annual ACM Symposium on User
Interface Software and Technology. 1–22.

[62] Sarah Tausch, Doris Hausen, Ismail Kosan, Andrey Raltchev, and Heinrich Huss-
mann. 2014. Groupgarden: Supporting Brainstorming through a Metaphorical
GroupMirror on Table orWall. In Proceedings of the Nordic Conference on Human-
Computer Interaction. 541–550.

[63] Sarah Tausch, Stephanie Ta, and Heinrich Hussmann. 2016. A comparison
of cooperative and competitive visualizations for co-located collaboration. In
Proceedings of the 2016 CHI conference on human factors in computing systems.
5034–5039.

[64] Jiachen Wang, Jiang Wu, Anqi Cao, Zheng Zhou, Hui Zhang, and Yingcai Wu.
2021. Tac-Miner: Visual Tactic Mining for Multiple Table Tennis Matches. IEEE
Transactions on Visualization and Computer Graphics 27, 6 (2021), 2770–2782.

[65] Ruotong Wang, Lin Qiu, Justin Cranshaw, and Amy X Zhang. 2024. Meeting
Bridges: Designing Information Artifacts that Bridge from SynchronousMeetings
to Asynchronous Collaboration. Proceedings of the ACM on Human-Computer
Interaction 8, CSCW1, 1–29.

[66] Zuo Wang, Jeremy Tzi Dong Ng, Ying Que, and Xiao Hu. 2024. Unveiling
Synchrony of Learners’ Multimodal Data in Collaborative Maker Activities. In
Proceedings of the Learning Analytics and Knowledge Conference. 922–928.

[67] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought Prompting Elicits Rea-
soning in Large Language Models. Advances in neural information processing
systems 35 (2022), 24824–24837.

[68] Bian Wu, Yiling Hu, Andrew R Ruis, and Minhong Wang. 2019. Analysing Com-
putational Thinking in Collaborative Programming: A Quantitative Ethnography
Approach. Journal of Computer Assisted Learning 35, 3 (2019), 421–434.

[69] Meng Xia, Mingfei Sun, Huan Wei, Qing Chen, Yong Wang, Lei Shi, Huamin
Qu, and Xiaojuan Ma. 2019. Peerlens: Peer-inspired Interactive Learning Path
Planning in Online Question Pool. In Proceedings of the CHI conference on human
factors in computing systems. 1–12.

[70] Rebecca Xiong and Judith Donath. 1999. PeopleGarden: creating data portraits
for users. In Proceedings of the 12th annual ACM symposium on User interface
software and technology. 37–44.

[71] Lixiang Yan, Vanessa Echeverria, Yueqiao Jin, Gloria Fernandez-Nieto, Linxuan
Zhao, Xinyu Li, Riordan Alfredo, Zachari Swiecki, Dragan Gašević, and Roberto
Martinez-Maldonado. 2024. Evidence-based Multimodal Learning Analytics for
Feedback and Reflection in Collaborative Learning. British Journal of Educational
Technology 55, 5 (2024), 1900–1925.

[72] Lisa Yan, Annie Hu, and Chris Piech. 2019. Pensieve: Feedback on Coding Process
for Novices. In Proceedings of the Acm Technical Symposium on Computer Science
Education. 253–259.

[73] Kexin Bella Yang, Vanessa Echeverria, Zijing Lu, Hongyu Mao, Kenneth Holstein,
Nikol Rummel, and Vincent Aleven. 2023. Pair-up: Prototyping Human-AI
Co-orchestration of Dynamic Transitions between Individual and Collaborative
Learning in the Classroom. In Proceedings of the CHI Conference on Human Factors
in Computing Systems. 1–17.

[74] Ashley Ge Zhang, Yan Chen, and Steve Oney. 2023. RunEx: Augmenting Regular-
Expression Code Search with Runtime Values. In Proceedings of IEEE Symposium
on Visual Languages and Human-Centric Computing. IEEE, 139–147.

[75] Ashley Ge Zhang, Yan Chen, and Steve Oney. 2023. VizProg: Identifying Misun-
derstandings by Visualizing Students’ Coding Progress. In Proceedings of the CHI
Conference on Human Factors in Computing Systems. 1–16.

[76] Ashley Ge Zhang, Xiaohang Tang, Steve Oney, and Yan Chen. 2024. CFlow:
Supporting Semantic Flow Analysis of Students’ Code in Programming Problems
at Scale. In Proceedings of the ACM Conference on Learning @ Scale. 188–199.

[77] Gefei Zhang, Zihao Zhu, Sujia Zhu, Ronghua Liang, and Guodao Sun. 2022.
Towards a better understanding of the role of visualization in online learning: A
review. Visual Informatics 6, 4 (2022), 22–33.

[78] Linxuan Zhao, Yuanru Tan, Dragan Gašević, David Williamson Shaffer, Lixi-
ang Yan, Riordan Alfredo, Xinyu Li, and Roberto Martinez-Maldonado. 2023.
Analysing Verbal Communication in Embodied Team Learning UsingMultimodal
Data and Ordered Network Analysis. In Proceedings of International Conference
on Artificial Intelligence in Education. Springer, 242–254.

[79] Ruijie Zhou, Yangyang Li, Xiuling He, Chunlian Jiang, Jing Fang, and Yue Li. 2024.
Understanding Undergraduates’ Computational Thinking Processes: Evidence
from an Integrated Analysis of Discourse in Pair Programming. Education and
Information Technologies (2024), 1–33.

https://github.com/tesseract-ocr/tesseract
https://openai.com/index/hello-gpt-4o/
https://github.com/pyannote/pyannote-audio
https://github.com/SYSTRAN/faster-whisper

CPVis: Evidence-based Multimodal Learning Analytics for Evaluation in Collaborative Programming

A DETAILS OF FORMATIVE STUDY
A.1 Background Information of Participants
The table 2 presents information about the participants in our
formative study.

A.2 Findings of the Semi-structured Interviews
Motivations: Participants unanimously agreed that collaborative
programming is an important teaching strategy for programming
education. However, different teachers had varying focuses and
practices regarding collaborative programming. Teachers special-
izing in computer science tended to have students complete tasks
independently in foundational programming courses (e.g., Python,
Java) while implementing collaborative programming for more
complex projects. For example, T3 stated, “I consider collaborative
learning only when the programming project requires different stu-
dents’ creative input, innovation, exploration, and discovery of new
content, or when the workload is too large for one person to complete.”
In contrast, teachers of non-computer science courses held different
views. E2 pointed out that for beginners who are new to program-
ming languages, even a fundamental programming problem can
be daunting. Collaborative programming can significantly alleviate
this issue and improve students’ efficiency. Group members can
work together to complete a programming task, which motivates
students, allows them to learn from each other, and reduces the
teaching burden (T4). Additionally, in collaborative programming

classes, teachers focus on students’ cognitive skills (e.g., knowledge
acquisition) and non-cognitive skills (e.g., computational thinking,
problem-solving abilities). Most participants believed that these
two aspects do not conflict and are part of the overall teaching
goals. T5 stated that her course design primarily focuses on devel-
oping non-cognitive skills, particularly enhancing students’ abilities
during the collaboration process. T4 believed that cognitive skills
can be supplemented with extra time or individual tutoring, but
problem-solving and collaboration skills are challenging to develop
outside of class. Furthermore, E1, T4, and T3 mentioned that quan-
tifying the improvement of students’ non-cognitive skills is very
challenging. On one hand, teachers and assistants are busy answer-
ing students’ questions, making it challenging to observe students’
performance. On the other hand, non-cognitive skills are not as
quickly assessed through tests as knowledge-based content.

Despite the unanimous recognition of the importance of collab-
orative programming, participants shared several challenges they
faced in practice, summarized as follows:

Group Formation: For group size, most participants preferred
group sizes of 2-3 students, noting that larger groups (up to 5 mem-
bers) could decrease the quality of collaboration andmake it difficult
for students to find their roles. T4 favored pair programming but
often had to form groups of three due to large class sizes. T1 and
T3 typically recommended groups of 4-5 students, given the com-
plexity and workload of their programming projects, which smaller

Participants Gender Age Teaching
experience Students taught Whether the class is

large-scale
Whether the students know
each other before

E1 Female 45 15 University Non-Computer
Science Majors Yes No

E2 Female 30 5 University Non-Computer
Science Majors Yes No

TA1 Male 24 1 University Non-Computer
Science Majors Yes No

TA2 Female 24 1 University Non-Computer
Science Majors Yes No

T1 Male 31 3 University Non-Computer
Science Majors Yes No

T2 Male 29 5 University Computer Sci-
ence Majors Yes Yes

T3 Male 36 8 University Computer Sci-
ence Majors No Yes

T4 Female 26 3 Vocational High School
Non-Computer Majors Yes Yes

T5 Female 26 3 Elementary School Stu-
dents No Yes

T6 Male 35 7 University Non-Computer
Science Majors Yes No

Table 2: The detailed background statistical information of the participants in the Formative Study.

Zhang et al.

groups might struggle to complete. For the group formationmethod,
participants had various approaches to forming groups. T2, T3, T4,
and T5, whose students come from fixed classes, generally allowed
students to create their own groups. In contrast, T6, T1, E1, and
E2 taught general education courses open to all students across
the university. These students came from different majors and did
not know each other, making self-selection difficult. E2 conducted
preliminary assessments of students and formed balanced groups
based on their prior knowledge. However, determining how to cre-
ate groups remains a significant challenge, as different criteria can
lead to varying outcomes. Arbitrarily formed groups might result
in imbalanced teams, where students’ abilities are insufficient to
complete the tasks.

Evaluating the Learning Objectives: Evaluating whether the
teacher has achieved the learning objectives is an essential criterion
for assessing the quality of collaborative programming courses. All
participants stated that they generally meet the learning objectives
and sometimes even exceed expectations. T4 mentioned that at the
start of the collaborative course, she assigned a group leader to
each group to take on a leadership role. While she initially spent a
significant amount of time guiding the group leaders and facilitating
student collaboration, by the second half of the semester, the group
leaders were typically able to function as “little teachers,” helping
group members complete tasks. This allowed the teacher to free up
time and energy for other responsibilities.

A.3 Results of Rating and Ranking in Formative
Study

Table 3 presents the metrics participants rated and ranked for the
collaborative programming visual analytics system, as discussed in
Section 3.2. The raw rating data is displayed in Table 4. The results
show that participants rated most of the features mentioned highly,
except for F3, F4, F5, F7, and F15. The raw ranking data is displayed
in Table 5. Each feature’s average ranking is listed (Fig. 11), with
lower numbers indicating that the evaluators more highly value the
feature. For example, the average ranking of “Students Performance
Overview” is 4.8, making it one of the most valued features. On the
other hand, “Role assignment suggestions within the group” has an
average ranking of 13.4, which is ranked lower by the evaluators.

Spearman Correlation Matrix: To assess the consistency be-
tween rankings, we used Spearman’s Rank Correlation to calcu-
late the correlation of rankings between each participant., The
Spearman correlation matrix shows the consistency of the rankings
between participants (Fig. 12). The correlation coefficient ranges
from -1 to 1: - A value closer to 1 indicates that the two evalua-
tors’ rankings are more consistent. - A value closer to -1 suggests
that the rankings are more inconsistent. - A value near 0 implies
no significant correlation between the two evaluators’ rankings.
For example, the correlation between participant 0 and participant
9 is 0.809, indicating relatively consistent rankings. In contrast,
the correlation between evaluator seven and evaluator 8 is - 0.150,
suggesting their rankings differ considerably.

Friedman Test Results:We conducted a Friedman test to assess
whether there are significant differences in rankings among differ-
ent participants. The Friedman test compares the ranking data of
multiple related samples to determine whether there are significant

Features

F1: Change in student engagement

F2: Change in student behavior

F3: Analysis of student emotional state

F4: Student background statistics

F5: Analysis of student programming habits

F6: Change in role distribution

F7: Role assignment suggestions within the group

F8: Group performance overview

F9: Comparison of group performances

F10: Analysis of similarity in group performance

F11: Generation of personalized suggestions

F12: View of raw data

F13: Programming task evaluation

F14: Visualization of problem-solving path

F15: Real-time feedback feature

F16: Students performance overview
Table 3: Features of Collaborative Programming Visualiza-
tion Systems Extracted from Semi-structured Interviews.

Figure 11: Ranking Results of F1-F16.

differences in rankings under different conditions. The test statistic
is 60.796, and the p-value is 1.84e-07. This very small p-value (<
0.05) indicates that:

- There are significant differences in the rankings of different
features. The evaluators’ ratings are not random or similar but show
clear preferences for specific features over others.

In conclusion, after comprehensively analyzing the results for
each feature, our system focuses on implementing features F1, F2,
F6, F8-14, and F16.

CPVis: Evidence-based Multimodal Learning Analytics for Evaluation in Collaborative Programming

Feature T6 T5 E1 E2 TA1 TA2 T1 T2 T3 T4 Mean SD

F1 5 6 5 6 7 6 7 5 6 7 6 0.82

F2 7 6 5 5 4 7 6 6 6 6 5.8 0.92

F3 3 4 3 4 4 5 6 4 3 4 4 0.94

F4 2 4 2 2 2 3 3 4 6 5 3.3 1.42

F5 4 3 6 5 4 3 4 4 3 5 4.1 0.99

F6 4 6 7 3 7 5 4 6 6 7 5.5 1.43

F7 2 4 3 4 2 4 4 3 4 3 3.3 0.82

F8 7 6 7 7 7 7 7 7 7 7 6.9 0.32

F9 6 6 5 7 5 4 7 6 5 7 5.8 1.03

F10 7 6 5 6 5 5 5 5 6 7 5.7 0.82

F11 7 6 5 5 5 5 6 7 7 7 6 0.94

F12 3 5 5 5 5 5 6 7 4 3 4.8 1.23

F13 7 6 7 7 7 7 7 7 6 6 6.7 0.48

F14 6 7 6 6 6 5 4 5 6 6 5.7 0.82

F15 2 3 4 3 2 5 6 7 7 4 4.3 1.89

F16 7 7 6 6 5 7 7 5 6 6 6.2 0.79

Table 4: Mean and SD Results of the Ratings for F1-F16 by Ten Participants.

Feature T6 T5 E1 E2 TA1 TA2 T1 T2 T3 T4 Mean SD

F1 7 1 7 9 12 2 1 11 1 4 5.5 4.28

F2 6 3 6 10 11 3 3 10 3 5 6 3.23

F3 12 8 16 14 16 12 13 9 4 13 11.7 3.74

F4 16 15 15 13 14 13 12 6 6 14 12.4 3.57

F5 14 13 14 15 15 15 14 12 2 15 12.9 3.96

F6 7 2 5 8 10 4 11 8 7 6 6.8 2.70

F7 15 14 13 16 13 14 15 13 5 16 13.4 3.17

F8 8 6 4 1 3 11 8 7 8 2 5.8 3.19

F9 5 5 12 7 9 6 9 14 16 7 9 3.83

F10 10 4 3 3 4 5 10 5 10 8 6.2 2.97

F11 9 7 2 4 5 7 7 4 9 9 6.3 2.45

F12 11 10 11 11 6 10 16 15 15 10 11.5 3.03

F13 3 9 1 5 1 8 6 16 11 3 6.3 4.79

F14 4 11 8 6 7 9 5 3 14 11 7.8 3.49

F15 13 16 10 12 8 16 2 1 12 12 10.2 5.18

F16 2 12 9 2 2 1 4 2 13 1 4.8 4.69

Table 5: Mean and SD Results of the Rankings for F1-F16 by Ten Participants.

Zhang et al.

Figure 12: Spearman’s Rank Correlation Results Between
Participants.

B PROMPTS
Below are the prompts used to label data.

B.1 Python Code Evaluation
Prompt:

I would like you to play the role of a teacher who teaches a
Python programming class, and you will be provided a question
statement and a Python code, which is the student’s answer to
the question. Regarding the Python code, you need to accomplish
two tasks. Here are the scoring criteria. Please mark each point
according to the scoring criteria and explain the reason. Meanwhile,
you should give your final score. If the score of each aspect is not 5,
please point out the demerits of the code. Also, note that you don’t
need to give the advised code.

1 criteria = {

2 "Problem -solving Approach (5%)": {

3 "Excellent (5)": "Shows an effective problem -

solving approach , effectively addressing key

challenges in the task",

4 "Good (4)": "Shows a good problem -solving

approach , with clear attempts to address challenges

in the task",

5 "Fair (3)": "Shows some effort in problem -solving

, but lacks clarity or effectiveness in addressing

challenges in the task",

6 "Poor (2)": "Shows limited problem -solving

efforts , with unclear or ineffective attempts to

address challenges in the task",

7 "Bad (1)": "Demonstrates no effective problem -

solving approach , unable to address the task"

8 },

9 "Code Integrity (35%)": {

10 "Excellent (5)": "The code is well -structured ,

organized , readable , and it effectively implements

the desired functionality",

11 "Good (4)": "The code structure and organization

are sufficient , and it implements the function ,

though readability could be enhanced",

12 "Fair (3)": "The code implements 80% of the

function but lacks consistency or clarity",

13 "Poor (2)": "The code implements 60% of the

function but lacks consistency or clarity",

14 "Bad (1)": "The code failed to implement 40% of

the function and lacks consistency or clarity"

15 },

16 "Code Accuracy (35%)": {

17 "Excellent (5)": "Code exhibits an excellent

level of accuracy , producing correct results under

various conditions and inputs",

18 "Good (4)": "Code exhibits good accuracy ,

producing correct results under most conditions and

inputs",

19 "Fair (3)": "Code accuracy is acceptable , but

there may be some occasional errors or

inconsistencies in the results",

20 "Poor (2)": "Code accuracy is poor , with frequent

errors or inconsistencies in the results",

21 "Bad (1)": "Code accuracy is severely lacking ,

with a high frequency of errors or inconsistencies

in the results"

22 },

23 "Algorithm Innovation (25%)": {

24 "Excellent (5)": "Shows innovative and creative

approaches , showcasing originality and ingenuity in

algorithm design and implementation",

25 "Good (4)": "Shows basic innovation in algorithm

design and implementation , but lacks originality or

significant creativity",

26 "Fair (3)": "Demonstrates limited innovation in

algorithm design and implementation , with little

originality or creativity demonstrated",

27 "Poor (2)": "Shows little innovation in algorithm

design and implementation , with no originality or

creativity demonstrated",

28 "Bad (1)": "Shows no innovation in algorithm

design and implementation; only capable of imitating

from simple examples"

29 }

30 }

Task: Task 1, you need to extract the key ideas of the code. Give
me a paragraph outlining the thought process of this code. Task 2,
Grade the code according to the scoring criteria, and don’t round
the final score.

Input Example:

1 Question: Existing list a=[49, 38 , 65 , 97 , 76 , 13 ,

27 , 55 , 4]

2 Requirement: Try to write a program in Python that sorts

the data elements in a from smallest to largest and

prints out the new sorted list a.

3 Answer:

4 a=[49 ,38 ,65 ,97 ,76 ,13 ,27 ,55 ,4]

5 a.sort()

6 print(a)

Output Example:

1 {

2 "Key ideas": "The provided code aims to sort a given

list of integers in ascending order. The process

follows these key steps:\n\t1. Define a list named `
a` containing a series of integers .\n\t2. Call the `
sort()` method on the list `a`, which sorts the list

in place in ascending order.\n\t3. Print the sorted

list to display the numbers from smallest to

largest .\nThis approach efficiently utilizes Python '

s built -in sorting capabilities and achieves the

task as specified in the question.",

3 "Score": "4.55 / 5",

4 "Details ": [

5 {

6 "Problem -solving Approach (5%)": {

7 "Score": "Excellent (5)",

CPVis: Evidence-based Multimodal Learning Analytics for Evaluation in Collaborative Programming

8 "Explanation ": "The code presents a clear

and effective approach to sorting the list using

Python 's built -in functionality , which is suitable

for the problem at hand."

9 },

10 "Demerits ": null

11 },

12 {

13 "Code Integrity (35%)": {

14 "Score": "Excellent (5)",

15 "Explanation ": "The code is well -

structured , organized , and highly readable. It makes

effective use of the `sort()` method while

maintaining clarity. There are no unnecessary

complexities in the implementation ."

16 },

17 "Demerits ": null

18 },

19 {

20 "Code Accuracy (35%)": {

21 "Score": "Excellent (5)",

22 "Explanation ": "The code accurately sorts

the list `a` and produces the correct output

without any errors. The use of the `sort()` method

guarantees that the order will be correct ."

23 },

24 "Demerits ": null

25 },

26 {

27 "Algorithm Innovation (25%)": {

28 "Score": "Fair (3)",

29 "Explanation ": "While the implementation

is effective and clear , it does not demonstrate any

innovative or creative algorithmic approach since it

relies on the built -in `sort()` method without any

modifications or enhancements ."

30 },

31 "Demerits ": "There is a lack of originality

in the sorting technique , as it could have showcased

a custom sorting algorithm , which would demonstrate

deeper understanding and application of algorithms

."

32 }

33]

34 }

B.2 Collaborative Behavioral Analysis
Prompt: You are a teacher teaching programming class and will
be provided some conversation files belonging to one group but in
different questions period, including question number, timestamp
for each speaker and corresponding conversation recorded in the
context of a collaborative programming course. It will be your
job to find students’ communication behaviors for all sentences
they said and record them in a JSON format file, besides, show
the prediction percentage of your response after each behavior by
using the scaffold. Notice again, you should show all the sentences
in the JSON file. If you can’t classify some of them into category,
indicate them into one category with the most similar meaning and
point out the percentage. Specifically, each question is encircled by
a “ ,” and you need to show details information in it.

Output Format:

1 {

2 "Question ": "Question Number",

3 "Conversations ": [

4 {

5 "Speaker ": "",

6 "Timestamp ": "",

7 "Content ": "",

8 "Behavior Category ": "",

9 "Prediction Percentage ": "",

10 "Explanation ": ""

11 },

12 {

13 "Speaker ": "",

14 "Timestamp ": "",

15 "Content ": "",

16 "Behavior Category ": "",

17 "Prediction Percentage ": "",

18 "Explanation ": ""

19 }

20]

21 }

Input Example:
1 {

2 "role": "user",

3 "content ": """

4 Question1

5 1.00 2.90 0303 This one is better done

6 2.90 13.90 0302 This one compares This first

question is so good that it doesn 't need doesn 't

need to be discussed too much , what else could be

wrong with it? There 's really no problem with it.

7 13.90 14.90 0303 Don 't don 't laugh eh?

8 21.00 24.30 0303 Good , the first question is not

too difficult , successfully completed

9 34.30 40.40 0302 Whatever , just mess around with

the name , just send this when the time comes.

10 40.40 43.40 0302 Good success , perfect , success.

11 """

12 }

Output Example:
1 {

2 "Question ": "Question1",

3 "Conversations ": [

4 {

5 "Speaker ": "0303" ,

6 "Timestamp ": "1.00 -2.90" ,

7 "Content ": "This is better done",

8 "Behavior Category ": "Project understanding",

9 "Prediction Percentage ": "100%" ,

10 "Explanation ": "Member expresses that the

task is easy , indicating understanding of the

project ."

11 },

12 {

13 "Speaker ": "0302" ,

14 "Timestamp ": "2.90 -13.90" ,

15 "Content ": "This comparison of this first

question is so good that it doesn 't need to be

without too much discussion , what could possibly be

wrong with it? There really is no problem with it.",

16 "Behavior Category ": "Project understanding",

17 "Prediction Percentage ": "90%",

18 "Explanation ": "Member emphasizes that the

first task is simple and questions if there are any

concerns , showing clarity in project understanding ."

19 },

20 {

21 "Speaker ": "0303" ,

22 "Timestamp ": "13.90 -14.90" ,

23 "Content ": "Don 't laugh.",

Zhang et al.

24 "Behavior Category ": "Unrelated chat",

25 "Prediction Percentage ": "60%",

26 "Explanation ": "This is unrelated humor , not

pertinent to the task , indicating a digression from

the activity ."

27 },

28 {

29 "Speaker ": "0303" ,

30 "Timestamp ": "21.00 -24.30" ,

31 "Content ": "Okay , the first question was not

too difficult and went well",

32 "Behavior Category ": "Acknowledgement",

33 "Prediction Percentage ": "100%" ,

34 "Explanation ": "The member acknowledges

successful completion of the first task."

35 },

36 {

37 "Speaker ": "0302" ,

38 "Timestamp ": "34.30 -40.40" ,

39 "Content ": "Whatever , just make up a name ,

and when the time comes , just send this.",

40 "Behavior Category ": "Unrelated chat",

41 "Prediction Percentage ": "50%",

42 "Explanation ": "Casual discussion about

naming , which strays from focused collaboration ."

43 },

44 {

45 "Speaker ": "0302" ,

46 "Timestamp ": "40.40 -43.40" ,

47 "Content ": "So successful , perfect ,

successful .",

48 "Behavior Category ": "Acknowledgement",

49 "Prediction Percentage ": "80%",

50 "Explanation ": "Member acknowledges success

with positive feedback ."

51 }

52]

53 }

B.3 Student Role Analysis
Prompt:

You are a teacher teaching programming class and will be pro-
vided some conversation files belonging to one group but in dif-
ferent questions period, including question number, timestamp for
each speaker and corresponding conversation recorded in the con-
text of a collaborative programming course. Your jobYour job will
be to find students’ planning solutions behaviors related to the
question for all sentences they said. Here is some example: “This
question could go like this...”, “Combine A and B”, “Notice the func-
tion.”, etc. Specifically, you should indicate each speaker’s sentences
of planning solutions corresponding timestamp. Besides, there are
some misunderstanding sentences that are not planning solutions:
“I’m just messing around with names.”, “That’s good. That’s good.”
etc. You need to find valuable comments that contribute or drive
the problem-solving process. Notice that you only need to indicate
the sentences about planning solutions or providing insights. Let
me explain “Navigator”, “Driver” and “Monitor”. Each group only
have three members, “Navigator” is the speaker who’s sentence is
about planning solutions, “Driver” is the member who responsible
for coding, this role is non-changeable. I will tell you who are the
“Driver” in each file’s first line. Besides, “Monitor” is the role who
is neither “Navigator” nor “Driver”. If the role of “Driver” is also
planning solutions, then the role of “Driver” should be changed to

“Navigator”, and “Driver” is None for this sentence. Significantly, if a
sentence is not about planning solutions, you also need to list/indi-
cate it. The Navigator should be None, but fill out the speakers of
“Monitors” and “Drivers”.

Output Format:
1 {

2 "Question ": "QuestionX",

3 "Conversations ": [

4 {

5 "Timestamp ": "XXX",

6 "Content ": "XXX",

7 "Navigator ": "XXX",

8 "Other_Roles ": [

9 {

10 "Monitors ": ["XXX"],

11 "Driver ": ["XXX"]

12 }

13]

14 },

15 {

16 "Timestamp ": "XXX",

17 "Content ": "XXX",

18 "Navigator ": "XXX",

19 "Other_Roles ": [

20 {

21 "Monitors ": ["XXX"],

22 "Driver ": ["XXX"]

23 }

24]

25 }

26]

27 }

Input Example:
1 """

2 Question2 Driver: 0302

3 46.70 49.40 0303 Question two , question two , continue

with question two.

4 58.10 60.90 0302 What is the title of the second

question?

5 60.90 62.20 0303, and the question is.

6 75.20 77.90 0301, also in descending order.

7 78.90 80.80 0302 That 's okay; that should be the

template for the first question.

8 80.80 81.80 0301 AB merge and then

9 81.80 87.30 0303 Right , right , the second question

would also work , yes

10 91.30 98.50 0302 Right , this one should be noted that

this ijk he this exclamation point should be an

introduction to the.

11 """

Output Example:
1 {

2 "Question ": "Question2",

3 "Conversations ": [

4 {

5 "Timestamp ": "46.70 -49.40" ,

6 "Content ": "Question two. Question two. Go on

to question two.",

7 "Navigator ": "0303" ,

8 "Other_Roles ": [

9 {

10 "Monitors ": ["0301"] ,

11 "Drivers ": ["0302"]

12 }

13]

14 },

CPVis: Evidence-based Multimodal Learning Analytics for Evaluation in Collaborative Programming

15 {

16 "Timestamp ": "58.10 -60.90" ,

17 "Content ": "What is the title of the second

question?",

18 "Navigator ": "0302" ,

19 "Other_Roles ": [

20 {

21 "Monitors ": ["0301" , "0303"] ,

22 "Drivers ": ["None"]

23 }

24]

25 },

26 {

27 "Timestamp ": "60.90 -62.20" ,

28 "Content ": "The question is.",

29 "Navigator ": "0303" ,

30 "Other_Roles ": [

31 {

32 "Monitors ": ["0301"] ,

33 "Drivers ": ["0302"]

34 }

35]

36 },

37 {

38 "Timestamp ": "75.20 -77.90" ,

39 "Content ": "It 's also sorted from childhood

to adulthood.",

40 "Navigator ": "0301" ,

41 "Other_Roles ": [

42 {

43 "Monitors ": ["0303"] ,

44 "Drivers ": ["0302"]

45 }

46]

47 },

48 {

49 "Timestamp ": "78.90 -80.80" ,

50 "Content ": "That 's okay. That would be the

template for the first question.",

51 "Navigator ": "0302" ,

52 "Other_Roles ": [

53 {

54 "Monitors ": ["0301" , "0303"] ,

55 "Drivers ": ["None"]

56 }

57]

58 },

59 {

60 "Timestamp ": "80.80 -81.80" ,

61 "Content ": "AB is merged and then",

62 "Navigator ": "0301" ,

63 "Other_Roles ": [

64 {

65 "Monitors ": ["0303"] ,

66 "Drivers ": ["0302"]

67 }

68]

69 },

70 {

71 "Timestamp ": "81.80 -87.30" ,

72 "Content ": "Yeah , yeah , the second question

would work , too. Yeah.",

73 "Navigator ": "0303" ,

74 "Other_Roles ": [

75 {

76 "Monitors ": ["0301"] ,

77 "Drivers ": ["0302"]

78 }

79]

80 },

81 {

82 "Timestamp ": "91.30 -98.50" ,

83 "Content ": "Yes , this one should be noted

that this ijk he this exclamation point is supposed

to be an introduction .",

84 "Navigator ": "0302" ,

85 "Other_Roles ": [

86 {

87 "Monitors ": ["0301" , "0303"] ,

88 "Drivers ": ["None"]

89 }

90]

91 }

92]

93 }

B.4 Teacher Scaffold Analysis
Prompt:

You are a teacher teaching programming class and you will be
provided a conversation file including timestamp for each speaker
and corresponding content recorded in the context of a collabora-
tive programming course. It will be your job to find instructors’
assitance category based on the following scaffold. Analyze the
different levels of scaffolding used by instructors during group
learning based on the following categories: Low-control cognitive
scaffolding (CS-L): The instructor raises open-ended questions that
elicit group thinking without providing new information. This
method encourages critical thinking but leaves the group to figure
out the details. Medium-control cognitive scaffolding (CS-M): The
instructor provides hints or clues to help groups solve cognitive
problems. This method supports problem-solving but maintains
some cognitive challenge. High-control cognitive scaffolding (CS-
H): The instructor directly provides answers or demonstrates tasks
(such as programming) using tools like computers. This method
offers direct guidance but may limit students’ independent problem-
solving. Metacognitive scaffolding (MS): The instructor monitors
and regulates the group’s learning goals and collaborative processes,
helping to manage group dynamics and learning strategies.

Input Example:
1 """

2 131.0 133.0 0000 What 's the problem? Oh, I see.

3 134.0 135.0 0000 3 Hmm , yes , exactly.

4 139.0 142.0 0000 Hmm , I, I, where is that program?

5 143.0 196.0 0000 Then here , you need to indent first ,

right? Wherever you don 't finish , you must add a

colon , okay? Hmm , like in the if statement , you 're

correct about that. I, I, it should be I != K, right

? Hmm , and and means "and", K should not be equal to

J, right? And another one , I should also not be

equal to K, right? Isn 't it true that I, J, and K

should all be different from each other? So if this

condition is met , what happens next? Then you

calculate something , calculate an S. The S would be

equal to I * 100 + J * 10 + K, right? Is that

correct? But don 't forget to print it out , so print

what? print this S, and that 's it.

6 """

Output Example:
1 {

2 "Speaker ": "0000" ,

3 "Timestamp ": "131.0 -133.0" ,

Zhang et al.

4 "Content ": "What is the question? Oh, oh, yes.",

5 "Behavior Category ": "Metacognitive scaffolding",

6 "Prediction Percentage ": "80%",

7 "Explanation ": "Requests clarification about the

third question.",

8 },

9 {

10 "Speaker ": "0000" ,

11 "Timestamp ": "134.0 -135.0" ,

12 "Content ": "Three digits , yes , yes.",

13 "Behavior Category ": "Metacognitive scaffolding",

14 "Prediction Percentage ": "90%",

15 "Explanation ": "Acknowledges the provided information

.",

16 },

17 {

18 "Speaker ": "0000" ,

19 "Timestamp ": "139.0 -142.0" ,

20 "Content ": "Hmm , where is your program? Oh.",

21 "Behavior Category ": "Metacognitive scaffolding",

22 "Prediction Percentage ": "90%",

23 "Explanation ": "Teacher responds by asking about the

student 's program location.",

24 },

25 {

26 "Speaker ": "0000" ,

27 "Timestamp ": "143.0 -196.0" ,

28 "Content ": "Then you start with if here , make sure to

indent , and always use a colon after each if. Yes ,

if i is not equal to k, right? And also k is not

equal to j. I also can 't be equal to k, right? So,

if i, j, and k are not equal to each other , then

what? You calculate something , calculate an s, which

equals i times 100, plus j times 10, plus k. Right?

But you have to remember to print it out. Print s,

and that 's it.",

29 "Behavior Category ": "High -control cognitive

scaffolding",

30 "Prediction Percentage ": "100%" ,

31 "Explanation ": "Teacher provides detailed explanation

and coding instructions .",

32 }

	Abstract
	1 Introduction
	2 Related Work
	2.1 Programming Education and Evaluation
	2.2 Multimodal Learning Analysis in Collaborative Programming
	2.3 Visual Analysis of Collaborative Behaviors in Meeting

	3 Formative Study
	3.1 Participants
	3.2 Procedure
	3.3 Findings
	3.4 Design requirement

	4 Data Collection and Processing
	4.1 Data Collection
	4.2 Data Preprocessing
	4.3 Scope of Collaborative Programming Performance Framework

	5 System Design
	5.1 System Overview
	5.2 Visual Design
	5.3 Filter View
	5.4 Content View
	5.5 Detail View

	6 Evaluation
	6.1 Quantitative Study
	6.2 Case Study
	6.3 User Study
	6.4 Result and Analysis

	7 Discussion
	7.1 Flower-Based Visual Design for Intuitive and Useful by Participants
	7.2 CPVis Enhanced Instructors' Confidence in Evaluating Groups and Students
	7.3 Theory-driven and LLM-powered Automation Evaluation for Quantifying Collaborative Learning

	8 Limitations and Future Work
	8.1 Limitation
	8.2 Future Work

	9 Conclusion
	Acknowledgments
	References
	A DETAILS OF FORMATIVE STUDY
	A.1 Background Information of Participants
	A.2 Findings of the Semi-structured Interviews
	A.3 Results of Rating and Ranking in Formative Study

	B PROMPTS
	B.1 Python Code Evaluation
	B.2 Collaborative Behavioral Analysis
	B.3 Student Role Analysis
	B.4 Teacher Scaffold Analysis

